222
правки
Изменения
м
Давайте Докажем это покажем. Нам Для проверки предиката нам надо определить знак <tex> A''x_0 + B''y_0 + C'' </tex>, где <tex> (x_0, y_0) </tex> {{---}} точка пересечения прямых <tex> l' </tex> и <tex> l </tex>. Эту точку можно найти из уравнения <tex>
Нет описания правки
</tex>.
\begin{pmatrix}
A & B\\
<tex> A'' (B'; -B)(-C; -C') + B'' (-A'; A)(-C; -C') + C \begin{vmatrix} A & B \\ A' & B' \end{vmatrix} = A'' \begin{vmatrix} B' & B \\ -C' & -C \end{vmatrix} - B'' \begin{vmatrix} A' & A \\ -C' & -C \end{vmatrix} + C'' \begin{vmatrix} A & A' \\ B & B' \end{vmatrix} = \begin{vmatrix} A'' & A' & A \\ B'' & B' & B \\ -C'' & -C' & -C \end{vmatrix} = \begin{vmatrix} A & B & C \\
A' & B' & C' \\
A'' & B'' & C'' \end{vmatrix} </tex>.
Таким образом если представить прямую <tex> Ax + By + C = 0 </tex> как точку с координатами <tex> (A, B, C) </tex>, где <tex> C </tex> {{---}} однородная координата, то этот предикат {{---}} всего лишь поворот, а проверка предиката {{---}} обход Грэхема.