Изменения

Перейти к: навигация, поиск

Список заданий по АСД сем2

Нет изменений в размере, 15:13, 18 мая 2014
Нет описания правки
# Будем называть предматроидом пару $\langle X, I \rangle$, для которой выполнены аксимомы нетривиальности ($\varnothing \in I$) и наследования независимости ($A \subset B$, $B \in I$, тогда $A \in I$). Пусть в предматроиде для любой весовой функции верно работает жадный алгоритм Радо-Эдмондса. Докажите, что такой предматроид является матроидом.
# Будем называть два элемента $x$ и $y$ матроида \emph{параллельными}, если пара $\{x, y\}$ образует цикл. Докажите, что если $A$ независимо $x \in A$, а $x$ и $y$ параллельны, то $A\setminus x\cup y$ также независимо.
# Рассмотрим носитель некоторого матроида, упорядочим произвольным образом его элементы: $X = \{x_1, x_2, \ldots, x_n\}$. Пусть $Y = \left\{x_i x_k \,|\, rank(\{x_1, \ldots, x_{k-1}, x_k\}) > rank(\{x_1, \ldots, x_{k-1}\})\right\}$. Докажите, что $Y$ независимо.
# Приведите пример матроида, который не является бинарным.
# Приведите пример матроида, который не является тернарным.
Анонимный участник

Навигация