Изменения

Перейти к: навигация, поиск
Нет описания правки
Для любых натуральных чисел a, b, c, таких что a &le; b &le; c, существует граф G, у которого <math>\varkappa = a, \lambda = b</math> и <math>\mathcal\delta = c </math>.
|proof=
Рассмотрим граф G, являющийся объединением двух полных графов <math>G_1</math> и <math>G_2</math>, содержащих c + 1 вершину. Выберем Отметим b вершин, принадлежащих подграфу <math>G_1</math> и a вершин, принадлежащих подграфу <math>G_2</math>. Добавим в граф G b ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе <math>G_1</math> и помеченной вершине, лежащей в подграфе <math>G_2</math>, причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей.
Тогда: <br>
1) Поскольку b &le; c, то было как минимум две непомеченные вершины, поэтому <math> \mathcal \delta</math> = с, так как минимальные степени вершин графов <math>G_1</math> и <math>G_2</math> была c, а степени их вершин не уменьшались.<br>
Анонимный участник

Навигация