Изменения

Перейти к: навигация, поиск

Двойственный матроид

61 байт добавлено, 19:06, 25 мая 2014
Нет описания правки
{{Теорема
|statement= Множество <tex>\mathcal B^*</tex> удовлетворяет [[Аксиоматизация_матроида_базами | аксиомам баз]].
|proof=
* 1. Пусть # Следует из <tex>B_1, B_2 | \in mathcal B | = | \mathcal B.^* | </tex> . # Пусть <tex>B_1 , B_2 \subseteq B_2 in \mathcal B, \Leftrightarrow \overline {B_1} \supseteq subseteq \overline {B_2}.</tex> Тогда по первой второй аксиоме баз для <tex>B_{1,2} :\ </tex> <tex>: \ overline {B_1} \subseteq \overline {B_2} \Rightarrow B_2 \subseteq B_1 \Rightarrow B_1 = B_2 \Rightarrow \overline {B_1}.= \overline {B_2} </tex>* 2. # Пусть <tex> \overline{B_1}, \overline {B_2} \in \mathcal B^*</tex> и <tex> p\in \overline{B_1}.</tex> Так как <tex> p\notin {B_1},</tex> то в <tex> B_1 \cup p </tex> имеется точно один цикл <tex>C</tex>. Поскольку цикл <tex>C</tex> не лежит в <tex>B_2</tex>, существует <tex>q \in C \cap \overline {B_2}.</tex> Множество <tex>(B_1 \cup p) \setminus q</tex> не содержит циклов, т.к. разрушен единственный цикл. Поэтому оно независимо и <tex>|(B_1 \cup p) \setminus q| = |B_1|.</tex> Следовательно, <tex> (B_1 \cup p) \setminus q</tex> - база. Тогда <tex>\overline {(B_1 \cup p \setminus q)} = \overline {(B_1 \cup p)} \cup q = (\overline {B_1} \setminus p) \cup q,</tex> где <tex>q \in \overline {B_2}.</tex> То есть выполняется вторая третья аксиома баз.
}}
 
{{В разработке}}
{{Определение
*:: Предположим <tex> C \in I </tex> - множество максимального размера среди таких, что <tex> A \in C </tex>, причём <tex> C </tex> {{---}} не база. Возмём также какое-нибудь <tex> B \in \mathcal B</tex>.
*:: Раз <tex> C </tex> не база, то <tex> |C| < |B| </tex>. В таком случае по [[Определение_матроида | 3-ему свойству матроида]] <tex> \exists b \in B: \ C \cap b \in I </tex>. Получили противоречие, поскольку <tex> C \cap b </tex> имеет большую мощность чем <tex> C </tex>.
*: Итак, возьмём <tex> B </tex> {{---}} базу <tex> M_1^* </tex>, включающую в себя <tex> A </tex>. По '''определению 1''' <tex>B \in \mathcal B_1 \Rightarrow \overline B \in \mathcal B </tex>. Поскольку <tex> B \cap \overline B = \varnothing, A \in subseteq B </tex>, то <tex> A \cap \overline B = \varnothing </tex>. В таком случае по '''определению 2''' <tex> A \in I_2 </tex>
* <tex> A \in I_2 \Rightarrow A \in I_1 </tex>
*: <tex> A \in I_2 </tex> означает что <tex> \exists B \in \mathcal B: \ A \cap B = \varnothing </tex>. Последнее можно записать иначе: <tex> A \subseteq \overline B </tex>.
*: Кроме того <tex> B \in \mathcal B \Rightarrow \overline B \in \mathcal B_1 </tex> по определению <tex> M_1^* </tex>. Подытожив вышесказанное можем написать То есть <tex> A \subseteq \overline B \in \mathcal B_1 </tex>, откуда следует <tex> A \in I_1 </tex>
}}
308
правок

Навигация