137
правок
Изменения
Нет описания правки
Если из набора линейно-независимых векторов убрать некоторые, то этот набор не станет зависимым.
3) <tex>A \in I, B \in I, \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex>
}}
Очевидно, что любой подграф леса, так же является лесом, а значит входит в <tex>I</tex> вследствие своей ацикличности.
3) <tex>A \in I, B \in I, \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex>
В графе <tex>G_A = \langle V, A \rangle </tex> как минимум две компоненты связанности, иначе <tex>G_A</tex> являлся бы остовным деревом и не существовало бы ациклического множества с большей мощностью.
Подмножество паросочетания также является паросочетанием. Удалим из исходного паросочетания <tex>P</tex> ребра, концами которых являются вершины из множества <tex>B \setminus A</tex>. Оставшееся множество ребер будет являться паросочетанием, покрывающим <tex>A</tex>. Значит <tex> A \in I </tex>.
3) <tex>A \in I, B \in I, \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Раскрасим ребра из паросочетания, соответствующего <tex> B </tex> в синий цвет, а соответствующего <tex> A </tex> — в красный. Причем ребра, соответствующие двум паросочетаниям, будут окрашены в пурпурный цвет. Таким образом, получится <tex> \left\vert B \setminus A \right\vert </tex> ребер синего цвета, <tex> \left\vert A \setminus B \right\vert </tex> ребер красного цвета, и будет выполняться соотношение <tex> \left\vert B \setminus A \right\vert > \left\vert A \setminus B \right\vert</tex>. Рассмотрим подграф <tex> H </tex>, индуцированный красными и синими ребрами из исходного графа. Каждая вершина соответствует либо двум ребрам — синему и красному, либо одному — синему или красному. Любая компонента связности представляет собой либо путь, либо цикл, состоящий из чередующихся красных и синих ребер. Так как граф двудольный, любой цикл состоит из четного числа ребер. Так как синих ребер больше, чем красных, то должен существовать путь, начинающийся и оканчивающийся синим ребром. Обозначим этот путь <tex> H' </tex>. Поменяем в <tex> H' </tex> синий и красный цвета. Получаем, что ребра, окрашенные в красный и пурпурный цвета образуют паросочетание в графе. Очевидно, что подмножество соответствующее этому новому паросочетанию имеет вид <tex>A \cup \mathcal{f} x \mathcal {g} </tex>, где <tex> x \in B \setminus A </tex>. Что значит, что <tex> A \cup \mathcal{f} x \mathcal {g} \in I</tex>.
<tex> \left\vert A \right\vert \leqslant \left\vert B \right\vert \leqslant k \Rightarrow \left\vert A \right\vert \leqslant k \Rightarrow A \in I </tex>
3) <tex>A \in I, B \in I, \left\vert A \right\vert < \left\vert B \right\vert \Rightarrow \mathcal {9} x \in B \setminus A, A \cup \mathcal{f} x \mathcal {g} \in I</tex>
Так как <tex>\left\vert A \right\vert < \left\vert B \right\vert </tex> и числа в каждом множестве различны, найдётся такое число <tex> x \in B </tex>, которое не будет принадлежать меньшему по мощности множеству <tex> A </tex>.