Изменения

Перейти к: навигация, поиск

Алгоритм Shift-Or

11 байт добавлено, 21:59, 6 июня 2014
Нет описания правки
==Алгоритм==
Пусть <tex>p</tex> {{---}} шаблон длины <tex>n</tex>, <tex>t</tex> {{---}} текст длины <tex>m</tex>.
Нам потребуется двоичный массив <tex>M</tex> размером <tex>n * (m + 1)</tex>, в котором индекс <tex>i</tex> пробегает значения от <tex>1</tex> до <tex>n</tex>, а индекс <tex>j</tex> {{---}} от <tex>0</tex> до <tex>m</tex>.<tex>M[i][j] =</tex> { <tex>1</tex>, если первые <tex>i</tex> символов <tex>p</tex> точно совпадают с <tex>i</tex> символами <tex>t</tex>, кончаясь на позиции <tex>j</tex>; <tex>0</tex> {{---}} иначе }.
То есть <tex>M[i][j] = 1</tex> тогда и только тогда, когда <tex>p[1..i] = t[j - i + 1..j]</tex>.
Например, пусть <tex>t = california</tex>, <tex>p = for</tex>. Тогда <tex>M[1][5] = M[2][6] = M[3][7] = 1</tex>, остальные <tex>M[i][j] = 0</tex>.
Получаем, что элементы, равные <tex>1</tex>, в строчке <tex>i</tex> показывают все места в <tex>t</tex>, где заканчиватся копии <tex>p[1..i]</tex>, а столбец <tex>j</tex> показывает все префиксы <tex>p</tex>, которые заканчиваются в позиции <tex>j</tex> строки <tex>t</tex>.
Определим <tex>Bit-Shift(j)</tex> как вектор, полученный сдвигом вектора для столбца <tex>j</tex> вниз на одну позицию и записью <tex>1</tex> в первой позиции. Старое значение в позиции <tex>n</tex> теряется.
То есть <tex>Bit-Shift(j)</tex> состоит из <tex>1</tex>, к которой приписаны первые <tex>n - 1</tex> битов столбца <tex>j</tex>.<tex>(0, 0, 0, 1, 0, 1, 1, 0, 1) \rightarrow (1, 0, 0, 1, 0, 1, 1, 0)</tex>
Из определения, нулевой столбец <tex>M</tex> состоит из нулей. Элементы любого другого столбца <tex>j > 0</tex> получаются из столбца <tex>j - 1</tex> и вектора <tex>U</tex> для символа <tex>t[j]</tex>. А именно, вектор для столбца <tex>j</tex> получается операцией побитового логического умножения <tex>and</tex> вектора <tex>Bit-Shift(j - 1)</tex> и вектора <tex>U(t[j])</tex>. <tex>M[j] = Bit-Shift(j - 1) and U(t[j])</tex>
Например, …
==Корректность==
Докажем, что метод <tex>Shift-Or</tex> правильно вычисляет элементы массива <tex>M</tex>. Заметим, что для любого <tex>i > 1</tex> элемент <tex>M[i][j] = 1</tex> тогда и только тогда, когда <tex>p[1..i - 1]</tex> совпадает с <tex>t[j - i + 1..j]</tex>, а символ <tex>p[i]</tex> совпадает с <tex>t[j]</tex>. Первое условие выполнено, когда элемент массива <tex>M[i - 1][j - 1] = 1</tex>, а второе — когда <tex>i</tex>-ый бит вектора <tex>U</tex> для символа <tex>t[j]</tex> равен <tex>1</tex>. После сдвига столбца <tex>j – 1</tex> алгоритм логически умножает элемент <tex>M[i – 1][j – 1]</tex> столбца <tex>j - 1</tex> на элемент <tex>i</tex> вектора <tex>U(t[j])</tex>. Следовательно, все элементы <tex>M</tex> вычисляются правильно и алгоритм находит все вхождения образца в текст.
==Эффективность==
Сложность алгоритма составляет <tex>O(nmn * m)</tex>, на препроцессинг {{---}} построение массива <tex>U</tex> требуется <tex>O(сигма|\Sigma| *n)</tex> операций и памяти. Если же <tex>n</tex> не превышает длину машинного слова, то сложность получается <tex>O(m)</tex> и <tex>O(n + сигма|\Sigma|)</tex> соответсвенно.
Анонимный участник

Навигация