3622
правки
Изменения
→Алгоритм
Тогда заметим, что ответ {{---}} это либо вершина <tex>u</tex>, либо какой-то её предок. Значит, нам нужно найти предка вершины <tex>v</tex>, который является предком вершины <tex>u</tex> с наибольшей глубиной. Заметим, что при фиксированном <tex>v</tex> каждый из предков вершины <tex>v</tex> порождает некоторый класс вершин <tex>u</tex>, для которых он является ответом, в этом классе содержатся все вершины которые находятся "слева" от этого предка.
На рисунке разные цвета {{---}} разные классы, а белые вершины {{---}} ещё не просмотренные в <tex>dfs</tex>.
[[file:mytree.png|500px|разные цвета {{---}} разные классы, а белые вершины ещё не просмотренные в dfs]]
Классы этих вершин не пересекаются, а значит , мы можем их эффективно обрабатывать с помощью [[СНМ (реализация с помощью леса корневых деревьев)|системы непересекающихся множеств]], которую будем хранить в массиве <tex>dsu</tex>.
Будем поддерживать также массив <tex>ancestor[1 \dots n]</tex>, где <tex> ancestor[w] </tex> {{---}} наименьший общий предок всех вершин, которые лежат в том же классе, что и <tex> w </tex>. Обновление массива <tex> ancestor </tex> для каждого элемента будет неэффективно. Поэтому зафиксируем в каждом классе какого-то представителя этого класса. Функция <tex> \mathrm{find}(w) </tex> вернёт представителя класса, в котором находится вершина <tex> w </tex>. Тогда наименьшим общим предком всех вершин из класса <tex> w </tex> будет вершина <tex> ancestor[\mathrm{find}(w)] </tex>.
* когда мы приходим в новую вершину <tex>v</tex> мы должны добавить её в новый класс {{---}} <tex>ancestor[v] = v</tex>
* когда просмотрим всё поддерево какого-то ребёнка <tex> u </tex> у вершины <tex> v </tex>, мы должны объединить поддерево ребёнка с классом вершины <tex> v </tex> (<tex>\mathrm{union}(v, u, v)</tex> {{---}} объединить классы вершин <tex> v </tex> и <tex> u </tex>, а наименьшим общим предком представителя нового класса сделать вершину <tex> v </tex>). Система непересекающихся множеств сама определит представителя в зависимости от используемой нами эвристики. Нам надо лишь правильно установить значение массива <tex> ancestor </tex> у нового представителя.