Изменения

Перейти к: навигация, поиск

Матроид Вамоса

1 байт добавлено, 17:53, 16 июня 2014
м
Матроид Вамоса не представим ни над каким полем
|proof=
Это значит, что не существует векторного пространства и системы из восьми векторов в нем, таких что матроид линейной независимости этих векторов изоморфен матроиду Вамоса.
 
Предположим, что существует изоморфный <tex>V</tex> векторный матроид <tex>M = \langle E, J \rangle</tex>, где <tex>E = \{x_1, x_2, {{...}} , x_8 \}</tex>, и для каждого <tex>i</tex> вектор <tex>x_i</tex> соответствует элементу <tex>i</tex> матроида Вамоса.
Множество <tex>\{x_1, x_2, x_3, x_4\}</tex> является базисом <tex>M</tex> (так как <tex>\{1, 2, 3, 4\}</tex> {{---}} независимое множество в матроиде Вамоса). Запишем координаты каждого вектора в этом базисе: <tex>x_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})</tex>. Для дальнейшего нам понадобятся также векторы <tex>y_i = (a_{i1}, a_{i2}, 0, 0)</tex> и <tex>z_i = (0, 0, a_{i3}, a_{i4})</tex>, где <tex>i = 1, 2, {{...}} , 8</tex>.

Навигация