Изменения
→Идея
== Идея ==
Данный алгоритм очень похож на [[алгоритм Дейкстры]]. Будем последовательно строить поддерево <tex>F</tex> ответа в графе <tex>G</tex>, поддерживая [[Дискретная_математика,_алгоритмы_и_структуры_данных#.D0.9F.D1.80.D0.B8.D0.BE.D1.80.D0.B8.D1.82.D0.B5.D1.82.D0.BD.D1.8B.D0.B5_.D0.BE.D1.87.D0.B5.D1.80.D0.B5.D0.B4.D0.B8 | приоритетную очередь]] <tex>Q</tex> из вершин <tex>G \setminus F</tex>, имеющую ключом для вершины <tex>v</tex> величину <tex>\min\limits_{u \in VF, uv \in EG}w(uv)</tex> — вес минимального ребра из вершин <tex>F</tex> в вершину <tex>v</tex>. Также для каждой вершины очереди будем хранить <tex>p(v)</tex> — вершину <tex>u</tex>, на которой достигается минимум в определении ключа. Дерево <tex>F</tex> поддерживается неявно, и его ребра — это пары <tex>\left(v,p(v)\right)</tex>, где <tex>v \in G \setminus \{r\} \setminus Q</tex>, а <tex>r</tex> — корень <tex>F</tex>. Изначально <tex>F</tex> пусто, в очереди все вершины с ключами <tex>+\infty</tex>. Выберём произвольную вершину <tex>r</tex> и присвоим её ключу значение <tex>0</tex>. На каждом шаге будем извлекать минимальную вершину <tex>v</tex> из приоритетной очереди и релаксировать все ребра <tex>vu</tex>, такие что <tex>u \in Q</tex>, выполняя при этом операцию <tex>\text{decreaseKey}</tex> над очередью и обновление <tex>p(v)</tex>. Ребро <tex>\left(v,p(v)\right)</tex> при этом добавляется к ответу.
== Реализация ==