3622
правки
Изменения
→Топологические свойства: картинка крыши
}}
[[Файл:Straight_skeleton_definition.png|right]]
Опишем подробней, как получается такое разбиение. Мы можем представить, будто все стороны прямоугольника параллельно двигаются внутрь с одинаковой постоянной скоростью, то есть многоугольник как бы сжимается внутрь. Тогда {{Acronym | вершины будут двигаться вдоль биссектрис | Очевидный факт}}, а точки пересечения биссектрис будут соединять совпавшие участки сторон прямоугольника в конце движения. В каждый момент времени от начала движения рёбер мы получаем слоистую структуру (рис 1.). Чем-то она похожа на строение крыши в домах (рис. 3). На рис. 2 синим цветом выделен <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> {{---}} множество отрезков, образованных точками пересечения при движении сторон полигона.Чем-то структура похожа на строение крыши в домах (рис. 3). И для решения этой задачи как раз <tex> \mathrm{straight}\ \mathrm{skeleton} </tex> и может применяться: по стенам здания необходимо спроектировать его крышу (рис. 5). [[Файл:Straight_roof.png|500px|center|thumb|Рис. 5 {{---}} Построение крыши здания по готовым стенам]]
Процесса стягивания многоугольника продолжается до тех пор, пока происходят его топологические изменения, то есть меняется число вершин в стянутом многоугольнике, и таким образом появляются новые вершины дерева <tex> \mathrm{straight}\ \mathrm{skeleton} </tex>. Существуют два типа изменений, в ходе которых образуются новый вершины дерева: