3622
правки
Изменения
м
→Кодирование Хэмминга
|}
Как видно из таблицы, даже если один из битов <tex>a, b, c, d</tex> передался с ошибкой, содержащие его <tex>xor</tex>-суммы не сойдутся. Итого, зная строку и столбец в проиллюстрированной таблице можно точно исправить ошибочный бит. Если один из битов <tex>a \oplus b, a \oplus c, b \oplus d, c\oplus d</tex> передался с ошибкой, то не сойдется только одна сумма и очевидно, что можно легко определить , какой бит неверный
По аналогичному принципу можно закодировать любое число бит. Пусть мы имеем исходную строку длиной в <tex>2^k</tex> бит. Для получения её кода добавим к ней <tex>k</tex> пар бит по следующему принципу: