Изменения
→Задача о максимальном ребре минимального веса
==Задача о максимальном ребре минимального веса==
Очевидно, что максимальное ребро в MST минимально. Пусть это не так, тогда рассмотрим разрез, который оно пересекает. В этом разрезе должно быть ребро с меньшим весом, иначе максимальное ребро было бы минимальным, но в таком случае минимальный остов не является минимальным, следовательно, максимальное ребро в минимальном остовном дереве минимально. Если же максимальное ребро в остовном дереве минимально, то такое дерево может не быть минимальным. Зато его можно найти быстрее чем MST, а конкретно за <tex>O(E)</tex>. С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности так, чтобы в первом подмножестве все ребра не превосходили ребро-медиану, а во втором были не меньше его. Запустим [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]], чтобы проверить образуют ли ребра из первого подмножества остов, содержащий все вершины графа. Если да, то, так как все ребра в первом подмножестве меньше чем во втором, рекурсивно запустим алгоритм от него. В противном случае сконденсируем в супервершины получившиеся несвязные компоненты и рассмотрим граф с этими супервершинами и ребрами из второго подмножества. Ребро, которое на На последнем шаге соединит две оставшиеся компонентыостанется одно ребро, оно и будет максимальным ребром минимального веса. На каждом шаге ребер становится в два раза меньше, а все операции выполняются за время пропорциональное количеству ребер на текущем шаге, следовательно, время работы алгоритма <tex>O(E+\frac{E}{2}+\frac{E}{4}+...+1)=O(E)</tex>. Чтобы восстановить остовное дерево, достаточно запустить алгоритм поиска в глубину и добавлять в остов только те ребра, которые не превосходят найденное алгоритмом ребро.
==Пример==