Изменения

Перейти к: навигация, поиск

Алгоритм Краскала

125 байт убрано, 09:35, 19 декабря 2014
Задача о максимальном ребре минимального веса
Описанный далее алгоритм ищет максимальное ребро минимального веса и одновременно строит остовное дерево. С помощью [[Поиск_k-ой_порядковой_статистики_за_линейное_время | алгоритма поиска k-ой порядковой статистики]] найдем ребро-медиану за <tex>O(E)</tex> и разделим множество ребер на два равных по мощности так, чтобы ребра в первом не превосходили по весу ребер во втором. Проверим образуют ли ребра из первого подмножества остов графа, запустив [[Использование_обхода_в_глубину_для_проверки_связности|обход в глубину]].
* Если да, то рекурсивно запустим алгоритм от него.
* В противном случае сконденсируем получившиеся несвязные компоненты в супервершины и рассмотрим граф с этими вершинами и ребрами из второго подмножества. Добавим в остов все ребра, которые просмотрели во время конденсации.
На последнем шаге останутся две компоненты связности и одно ребро в первом подмножестве — это максимальное ребро минимального веса, добавим его в остов. Получившийся остов может не быть минимальным, но все ребра в нем не превосходят по весу ребра, которое мы нашли.
Анонимный участник

Навигация