146
правок
Изменения
Нет описания правки
В [[Троичная_логика |троичной логике]] "лжи" и "истине" соответствует <tex>-</tex> и <tex>+</tex>. Третьему состоянию соответствует <tex>0</tex>.
Мы будем рассматривать простую троичную [[Реализация_булевой_функции_схемой_из_функциональных_элементов |функциональную схему ]] — троичный [[Сумматор|сумматор]]. Поэтому, вместо обозначений <tex>\{-, 0, +\}</tex>, мы используем <tex>\{0, 1, 2\}</tex> (несимметричная троичная система счисления).
== Составные части полусумматора ==
Полусумматор состоит из двух частей: сложения по модулю <tex>3</tex> и переноса в <tex>n + 1</tex> следующий разряд.
=== Логическое сложение по модулю <tex>3</tex> при одном неполном слагаемом ===
Для сложения одного троичного разряда с разрядом переноса.
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{x_0=y}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|}
=== Разряд переноса при сложении с неполным слагаемым ===
Для сложения одного троичного разряда с разрядом переноса.
Результат не изменяется при перемене ест мест операндов.
{| style="background-color:#CCC;margin:0.5px"
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{x_0=y}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|}
== Троичный полусумматор с одним неполным слагаемым ==
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{x_0=y}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{sum}}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{transfer}}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|}
''transfer'' содержит разряд переноса, ''sum'' содержит сумму по модулю <tex>3</tex>.
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{x_0=y}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{sum}}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 30px"| <tex>\bf{z_{transfer}}</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 30px"| <tex>0</tex>
|}
''transfer'' — перенос в <tex>n + 1</tex>следующий разряд, несимметричный.
''sum'' — сумма по модулю <tex>3</tex>, несимметричная.
|style="background-color:#FFF;padding:2px 10px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 10px"| <tex>\bf{x_1}</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 10px"| <tex>\bf{x_2}</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 10px"| <tex>\bf{z_{sum}}</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>1</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|-
|style="background-color:#EEE;padding:2px 10px"| <tex>\bf{z_{transfer}}</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|style="background-color:#FFF;padding:2px 10px"| <tex>0</tex>
|}
В разряде переноса не бывает третьего значения троичного разряда <tex>(2)</tex>, так как в «худшем» случае <tex>2_{10}+2_{10}+1_{10}=5_{10}=12_3</tex>, то есть в старшем разряде <tex>«1»</tex>. Единица переноса возникает в <tex>9</tex>-ти случаях из <tex>18</tex>.
Как в двоичной логике двоичный тринарный полный сумматор заменяется двумя бинарными полусумматорами, так и в троичной логике троичный тринарный полный сумматор можно заменить на два троичных бинарных полусумматора, только с той разницей, что два двоичных бинарных полусумматора одинаковые, а два троичных бинарных полусумматора разные.
1. Один полусумматор полный бинарный («сложение двух полных троичных разрядов»). Второй полусумматор — не полный бинарный («сложение одного полного троичного разряда с неполным троичным разрядом (с <tex>2/3</tex> от полного троичного разряда)»), так как в разряде переноса не бывает значений больших чем <tex>«1»</tex>.
2. Один неполный бинарный «сложение <tex>1</tex> троичного разряда с <tex>2/3</tex> троичного разряда». Второй бинарный несимметричный «сложение <tex>1</tex> троичного разряда с <tex>1</tex> и <tex>2/3</tex> троичного разряда». Результат — двухразрядный длиной <tex>1</tex> и <tex>2/3</tex> троичных разряда.
== См. также ==
* [[Двоичный каскадный сумматор]]
* [[Контактная схема]]
* [[Квантовые гейты]]
==Источники информации==
* [https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Википедия — Некоторые троичные схемы]
* [https://ru.wikipedia.org/wiki/%D0%A1%D1%83%D0%BC%D0%BC%D0%B0%D1%82%D0%BE%D1%80#cite_note-9 Википедия — Различные сумматоры]
[[Категория: Дискретная математика и алгоритмы]]
[[Категория: Схемы из функциональных элементов ]]