Изменения

Перейти к: навигация, поиск
Нет описания правки
== Описание ==
Алгоритм Томпсона строит по [[Недетерминированные конечные автоматы|НКА]] эквивалентный [[Детерминированные конечные автоматы|ДКА]] следующим образом:
* Начало.* '''Шаг 1''' Помещаем в очередь <tex>Q</tex> множество, состоящее только из стартовой вершины.* '''Шаг 2''' Затем, пока очередь не пуста выполняем следующие действия:
** Достаем из очереди множество, назовем его <tex>q</tex>
** Для каждого <tex>c \in \Sigma</tex> построим множество, содержащее состояния, в которые ведет символ <tex>c</tex> по каждому состоянию из каждого состояния из <tex>q</tex>. Затем положим построенное множество в очередь <tex>Q</tex> только если оно не лежало там раньше. Каждое такое множество в итоговом ДКА будет отдельной вершиной, в которую будут вести переходы по соответствующим символам.** Если в множестве <tex>q</tex> хотя бы одна из вершин была терминальной в НКА, то соответствующая данному множеству вершина в ДКА также будет терминальной.* Конец
== Построение эквивалентного ДКА по НКА ==
Построенный ДКА эквивалентен данному НКА.
|proof=
#Докажем, что любое слово, которое принимает НКА, будет принято построенным ДКА. Заметим, что <tex>\forall q \in q_d, \forall c \in \Sigma, \forall p \in \delta(q, c): p \in \delta_d(q_d, c)</tex>. Рассмотрим слово <tex>w=w_1...w_m</tex>, которое принимает автомат НКА: <tex>\langle s, w_1w_2...\dots w_m \rangle \vdash \langle u_1, w_2...\dots w_m \rangle \vdash \langle u_m, \varepsilon \rangle, u_m \in T</tex>. Проверим, что построенный ДКА тоже принимает это слово. Заметим, что <tex>s \in s_d</tex>, а, значит, исходя из нашего наблюдения, мы получаем, что <tex>u_1 \in {u_d}_1</tex>, где <tex>{u_d}_1 = \delta_d(s, w_1)</tex>. Далее, несложно заметить, что <tex>\forall i \leqslant m : u_i \in {u_d}_i</tex>, где <tex>\langle s_d, w_1w_2...\dots w_m \rangle \vdash \langle {u_d}_1, w_2...\dots w_m \rangle \vdash \langle {u_d}_i, w_{i + 1}...\dots w_m\rangle</tex>. Таким образом, <tex>u_m \in {u_d}_m</tex>, а из определения терминальных состояний в построенном ДКА мы получаем, что <tex>{u_d}_m \in T_d</tex>, то есть наш ДКА тоже принимает cлово <tex>w</tex>.#Докажем, что любое слово, которое принимает построенный ДКА, принимает и НКА. Сначала сделаем наблюдение, что если <tex>q_d=\{q\}</tex>, и мы из него достигли по строке <tex>S</tex> какого-то состояния <tex>p_d</tex>, то <tex>\forall p \in p_d</tex> существует путь из <tex>q</tex> в <tex>p</tex> в НКА по строке <tex>S</tex>. Рассмотрим слово <tex>w=w_1...\dots w_m</tex>, которое принимает автомат ДКА: <tex>\langle s_d, w_1w_2...\dots w_m \rangle \vdash \langle {u_d}_1, w_2...\dots w_m \rangle \vdash \langle {u_d}_m, \varepsilon \rangle, {u_d}_m \in T_d</tex>. Проверим, что НКА тоже принимает это слово. Так как <tex>s_d = \{s\}</tex>, и мы из <tex>s_d</tex> достигли <tex>{u_d}_m \in T_d</tex>, возьмём любое терминальное состояние <tex>u_m \in {u_d}_m</tex>. По нашему наблюдению в НКА есть путь из <tex>s</tex> в <tex>u_m</tex> по строке <tex>w</tex>, а, значит, НКА принимает это слово.
Таким образом, множества слов, допускаемых ДКА и НКА, совпадают, то есть они эквивалентны.
}}
Анонимный участник

Навигация