14
правок
Изменения
Нет описания правки
==Определения==
Пусть графы <tex>G_1</tex> и <tex>G_2</tex> имеют непересекающиеся множества вершин <tex>V_1</tex> и <tex>V_2</tex> и непересекающиеся множества ребер <tex>X_1</tex> и <tex>X2</tex>.
{{Определение
'''Соединением''' <tex>G_1 + G_2</tex> называется граф, который состоит из <tex>G_1 \cup G_2</tex> и всех ребер, соединяющих <tex>V_1</tex> и <tex>V_2</tex>.
}}
[[Файл:соединение.png|thumb|1100px|center]]
{{Определение
|id = proizvedenie
Вершины <tex>u</tex> и <tex>v</tex> смежны в <tex>G=G_1 + G_2</tex> тогда и только тогда, когда (<tex>u_1 = v_1</tex>, а <tex>u_2</tex> и <tex>v_2</tex> - смежные) или (<tex>u_2 = v_2</tex>, а <tex>u_1</tex> и <tex>v_1</tex> - смежные).
}}
[[Файл:произведение.png|thumb|1100px|center]]
{{Определение
|id = compozicia
Вершины <tex>u</tex> и <tex>v</tex> смежны в <tex>G=G_1 + G_2</tex> тогда и только тогда, когда (<tex>u_1</tex> и <tex>v_1</tex> - смежные) или (<tex>u_1 = v_1</tex>, а <tex>u_2</tex> и <tex>v_2</tex> - смежные).
}}
[[Файл:композиция.png|thumb|1100px|center]]