Изменения
Нет описания правки
Распишем субфакториалы от <tex dpi = "140"> n-2 </tex> и <tex dpi = "140"> n-1 </tex>:
<tex dpi = "140"> (n-1) \times (n-2)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}-(n-1)!\sum \limits_{k = 0}^{n-1} \frac {(-1)^{k}}{k!}=(-1)^{n} </tex>
<tex dpi = "140"> (n-1)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}-(n-1)!\sum \limits_{k = 0}^{n-2} \frac {(-1)^{k}}{k!}+ \frac {(-1)^{n-1}}{(n-1)!}=(-1)^{n} </tex>
Субфакториалы от <tex dpi = "140"> n-2 </tex> сокращаются, остается верное равенство <tex dpi = "140"> -(-1)^{n-1}=(-1)^{n} </tex>
}}