35
правок
Изменения
→Эквивалентность автоматов
[[Файл:EqualStackAutomata.png|left]]
'''1.''' Добавим переходы по <tex>\varepsilon</tex> из каждого допускающего состояния автомата <tex>\mathcal{P}_{T}</tex> в новое состояние <tex>p</tex>, которое отвечает за очистку стека. Находясь в состоянии <tex>p</tex>, автомат <tex>\mathcal{P_{N}}</tex> опустошает свой магазин и ничего не прочитывает на входе. Таким образом, как только исходный автомат <tex>\mathcal{P}_{T}</tex> приходит в допускающее состояние, прочитав слово <tex>w</tex>, <tex>\mathcal{P_{N}}</tex> опустошает свой магазин, также прочитав только слово <tex>w</tex>. '''2.''' Во избежание случая, когда <tex>\mathcal{P}_{T}</tex> может опустошить свой магазин без допуска, <tex>\mathcal{P_{N}}</tex> использует свой маркер дна <tex>Z_{1}</tex>. Добавление нового стартового состояния <tex>s</tex> позволяет затолкнуть маркер <tex>Z_{0}</tex> автомата <tex>\mathcal{P}_{T}</tex> в магазин и перейти в стартовое состояние <tex>\mathcal{P}_{T}</tex>. '''3.''' Каждый переход <tex>\mathcal{P}_{T}</tex> есть и у автомата <tex>\mathcal{P_{N}}</tex>, символ <tex>Z_{1}</tex> хранится в магазине под всеми символами из <tex>\Gamma</tex> и является символом, по которому нет переходов в <tex>\mathcal{P}_{T}</tex>. Тогда <tex>\mathcal{P_{N}}</tex> может совершить следующие действия: <tex>(s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash (q, \varepsilon, \alpha Z_{1})\vdash (p, \varepsilon,\varepsilon) </tex>, что означает <tex>\mathcal{P_{N}}</tex> допускает слово <tex>w</tex> по пустому магазину.
</font>
<font face="Times" size="3">
*'''Доказательство:'''<tex>\Leftarrow</tex> Исходя из МП-автомата <tex>\mathcal{P}_{T}</tex>, допускающего язык <tex>L</tex> по пустому стеку, построим МП-автомат <tex>\mathcal{P_{N}}</tex>, допускающий <tex>L</tex> по заключительному состоянию.
[[Файл:EqualAllowAutomataPict.png|left]]