35
правок
Изменения
→Эквивалентность автоматов
'''2.''' Во избежание случая, когда <tex>\mathcal{P}_{T}</tex> может опустошить свой магазин без допуска, <tex>\mathcal{P_{N}}</tex> использует свой маркер дна <tex>Z_{1}</tex>. Добавление нового стартового состояния <tex>s</tex> позволяет затолкнуть маркер <tex>Z_{0}</tex> автомата <tex>\mathcal{P}_{T}</tex> в магазин и перейти в стартовое состояние <tex>\mathcal{P}_{T}</tex>.
'''3.''' Каждый переход <tex>\mathcal{P}_{T}</tex> есть и у автомата <tex>\mathcal{P_{N}}</tex>, символ <tex>Z_{1}</tex> хранится в магазине под всеми символами из <tex>\Gamma</tex> и является символом, по которому нет переходов в <tex>\mathcal{P}_{T}</tex>. Тогда <tex>\mathcal{P_{N}}</tex> может совершить следующие действия: <tex>(s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash ^{*} (q, \varepsilon, \alpha Z_{1})\vdash ^{*} (p, \varepsilon,\varepsilon) </tex>, что означает <tex>\mathcal{P_{N}}</tex> допускает слово <tex>w</tex> по пустому магазину.
'''2.''' Добавим новое допускающее состояние <tex>p</tex>, в которое автомат переходит, как только обнаруживает, что <tex>\mathcal{P_{N}}</tex> опустошил свой магазин. Таким образом допущенное слово по пустому стеку, будет допускаться и по заключительному состоянию, используя <tex>\varepsilon</tex> переходы в новое состояние.
'''3.''' Каждый переход <tex>\mathcal{P_{N}}</tex> есть и у автомата <tex>\mathcal{P}_{T}</tex>. Тогда, согласно введенным начальному и заключительному состоянию, автомат <tex>\mathcal{P}_{T}</tex> может совершить следующие действия: <tex>(s, w, Z_{1})\vdash (s_{0}, w, Z_{0} Z_{1})\vdash ^{*} (q, \varepsilon, Z_{1})\vdash (p, \varepsilon,Z_{1}) </tex>, что означает <tex>\mathcal{P}_{T}</tex> допускает слово <tex>w</tex> по заключительному состоянию <tex>p</tex>.
</font>