577
правок
Изменения
→Преимущества красно-чёрных деревьев
== Преимущества красно-чёрных деревьев ==
При вставке выполняется не более <tex>O(1)</tex> вращений.
Алгоритм вставки и удаления может быть написан в один проход сверху вниз, вместо алгоритма, который использует рекурсивный проход вниз, родительские указатели или явный стек для обеспечения возможности пройти назад вверх, чтобы провести перебалансировку.
Процедуру балансировки практически всегда можно выполнять параллельно с процедурами поиска, так как алгоритм поиска не зависит от атрибута цвета узлов.
Сбалансированность этих деревьев хуже, чем у АВЛ, но работа по поддержанию сбалансированности в красно-чёрных деревьях обычно эффективнее. Для балансировки красно-чёрного дерева производится минимальная работа по сравнению с АВЛ-деревьями.
Использует всего 1 бит дополнительной памяти для хранения цвета вершины. Но на самом деле в современных вычислительных системах память выделяется кратно байтам, поэтому это не является преимуществом относительно, например, АВЛ-дерева, которое хранит 2 бита. То есть используются целые числа, так как работа с битами требует дополнительных процессорных вычислений. Однако есть реализации красно-чёрного дерева, которые хранят значение цвета в бите. Пример {{---}} Boost Multiindex. В этой реализации уменьшается потребление памяти красно-чёрным деревом, так как бит цвета хранится не в отдельной переменной, а в одном из указателей узла дерева (этот прием опасен выходом за границу доступной памяти).