Изменения
→Лемма (О неиспользуемых вершинах)
{{Лемма
|about=О неиспользуемых вершинах
|statement=
[[Файл:edgeToDelete.png|150px|thumb|right|Удаляем <tex> BD </tex>]]
# Если существуют вершины <tex> A, B, C </tex> одного препятствия и вершина <tex> D </tex> такая, что поворот <tex> DBA </tex> не совпадает с поворотом <tex> DBC </tex>, то ребро <tex> DB </tex> не принадлежит кратчайшему пути и его можно удалить из графа. (См. поясняющую картинку справа)# Все внутренние вершины, кроме вырожденного случая, (начальная/конечная точка лежит внутри выпуклой оболочки фигуры) можно игнорировать.
|proof=
[[Файл:edgeNotToDelete.png|200px|thumb|right|Не удаляем <tex> BS </tex>]]
# Путь проходящий через ребро <tex> BD </tex> будет длиннее, чем через соседей точки <tex> B </tex>, так как по неравенству треугольника <tex> AB + BD > AD </tex># Если случай не вырожденный, значит заход внутрь фигуры только увеличит суммарный путь, так как по неравенству треугольника расстояние между соседними выпуклыми вершинами всегда меньше суммы расстояний с учётом внутренней.
}}