Изменения

Перейти к: навигация, поиск

Двойственный матроид

349 байт добавлено, 00:59, 20 мая 2015
Нет описания правки
|statement=[[Определение матроида|Матроид]], двойственный к [[Примеры матроидов|матричному]] над телом <tex>F</tex>, так же является матричным над телом <tex>F</tex>
|proof=
: Пусть <tex> M = \langle X, \mathcal{I} \rangle</tex> {{---}} произвольный матричный матроид над телом <tex>F</tex>, <tex> X = \{1,\ldots,m\} </tex>, <tex>r</tex> {{---}} его [[Ранговая функция, полумодулярность|ранговая функция]]. Рассмотрим сначала крайний случай тривиального и (двойственного к нему) полного матроида.:* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является тривиальным, если <tex>\mathcal{I} = \varnothing </tex>.<tex>r(\mathcal{I}) = 0</tex>:* Матроид <tex> M = \langle X, \mathcal{I} \rangle</tex> является полным, если <tex>\mathcal{I} = 2^X</tex>.<tex>r(\mathcal{I}) = |X|</tex>
:Они, очевидно, представимы над телом <tex>F</tex> нулевой и единичной матрицей соответственно.
: Рассмотрим следующую однородную систему уравнений над пространством векторов-столбцов <tex>F^m</tex>:
:: <tex>(1): PX=0</tex>.
: Для задания базиса ФСР этой системы нам достаточно<ref>[[wikipediahttps://ru:.wikipedia.org/wiki/Решение_систем_линейных_алгебраических_уравнений Википедия {{---}} Решение систем линейных алгебраических уравнений|достаточно]] </ref> <tex>m - r</tex> линейно независимых векторов. Пусть
:: <tex>(2): X_1, X_2,\ldots, X_{m-r}</tex>
:{{---}} базис пространства решений системы (1). Составим из этих столбцов <tex>(m \times (m - r))</tex>-матрицу <tex>Q=(X_1, X_2, \ldots, X_{m-r})</tex>. Покажем, что матроид <tex>M^*</tex> изоморфен матроиду строк матрицы <tex>Q</tex> над телом <tex>F</tex>. Для этого нам достаточно установить, что система каких-либо <tex>r</tex> столбцов матрицы <tex>P</tex> линейно независима тогда и только тогда, когда линейно независима дополняющая ее система <tex>m - r</tex> строк матрицы <tex>Q</tex>. Дополняющая система строк {{---}} это система строк, номера которых дополняют номера столбцов исходной системы столбцов до множества <tex>\{1,\ldots, m\}</tex>.
:Возьмем произвольную систему из r cстолбцов матрицы <tex>P</tex>. Для простоты обозначений будем считать, что взяты первые<tex>r</tex> столбцов (мы всегда можем переставить столбцы матрицы местами, не поменяв характера их линейной зависимости). Пусть <tex>P_1(t\times r)</tex> {{---}} подматрица матрицы <tex>P</tex>, составленная из взятых первых <tex>r</tex> столбцов. Рассмотрим однородную систему линейных уравнений над пространством векторов-столбцов <tex>F^r</tex>:
::<tex>(3): P_1Y=0</tex>
: Пусть столбцы матрицы <tex>P_1</tex> линейно зависимы. Тогда система (3) имеет ненулевое решение <tex>Y</tex>. Добавим к нему снизу <tex>m - r</tex> нулей, получим ненулевое решение <tex>X</tex> системы (1). Выразим <tex>X</tex> через базис (2) пространства решений системы (1):
::<tex>(4): X=\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_{m-r} X_{m-r}</tex>
: где среди коэффициентов есть хотя бы один ненулевой элемент из <tex>F</tex>. Введем в рассмотрение столбцы
::<tex>(5): X'_1, X'_2, \ldots, X'_{m-r}</tex>
: из пространства <tex>F^{m-r}</tex>, полученные соответственно из столбцов <tex>X_1, X_2, \ldots, X_{m-r}</tex> отбрасыванием первых <tex>r</tex> компонент. Составим из этих "урезанных" столбцов <tex> ((m - r) \times (m - r))</tex>-матрицу <tex>Q_1 = (X'_1, X'_2, \ldots, X'_{m-r})</tex>. Матрица <tex>Q_1</tex> {{---}} это квадратная матрица порядка <tex>m-r</tex>, которая является подматрицей матрицы <tex>Q</tex> и расположена внизу матрицы <tex>Q</tex>. Из равенства (4) следует, что
:: <tex>(6): 0=\alpha_1 X'_1 + \alpha_2 X'_2 + \ldots + \alpha_{m-r} X'_{m-r}</tex>
: т.е. система столбцов квадратной матрицы <tex>Q_1</tex> линейно зависима. Тогда линейно зависима и система строк этой матрицы, т.е. линейно зависима система из <tex>m - r</tex> последних строк матрицы <tex>Q</tex>. Что и требовалось доказать.
:<tex>\Longrightarrow</tex>::Возьмем произвольную систему из r столбцов матрицы <tex>P</tex>. Для простоты обозначений будем считать, что взяты первые<tex>r</tex> столбцов (мы всегда можем переставить столбцы матрицы местами, не поменяв характера их линейной зависимости). Пусть <tex>P_1(t\times r)</tex> {{---}} подматрица матрицы <tex>P</tex>, составленная из взятых первых <tex>r</tex> столбцов. Рассмотрим однородную систему линейных уравнений над пространством векторов-столбцов <tex>F^r</tex>: :::<tex>(3): P_1Y=0</tex>:: Пусть столбцы матрицы <tex>P_1</tex> линейно зависимы. Тогда система (3) имеет ненулевое решение <tex>Y</tex>. Добавим к нему снизу <tex>m - r</tex> нулей, получим ненулевое решение <tex>X</tex> системы (1). Выразим <tex>X</tex> через базис (2) пространства решений системы (1)::::<tex>(4): X=\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_{m-r} X_{m-r}</tex>:: где среди коэффициентов есть хотя бы один ненулевой элемент из <tex>F</tex>. Введем в рассмотрение столбцы :::<tex>(5): X'_1, X'_2, \ldots, X'_{m-r}</tex>:: из пространства <tex>F^{m-r}</tex>, полученные соответственно из столбцов <tex>X_1, X_2, \ldots, X_{m-r}</tex> отбрасыванием первых <tex>r</tex> компонент. Составим из этих "урезанных" столбцов <tex> ((m - r) \times (m - r))</tex>-матрицу <tex>Q_1 = (X'_1, X'_2, \ldots, X'_{m-r})</tex>. Матрица <tex>Q_1</tex> {{---}} это квадратная матрица порядка <tex>m-r</tex>, которая является подматрицей матрицы <tex>Q</tex> и расположена внизу матрицы <tex>Q</tex>. Из равенства (4) следует, что ::: <tex>(6): 0=\alpha_1 X'_1 + \alpha_2 X'_2 + \ldots + \alpha_{m-r} X'_{m-r}</tex>:: т.е. система столбцов квадратной матрицы <tex>Q_1</tex> линейно зависима. Тогда линейно зависима и система строк этой матрицы, т.е. линейно зависима система из <tex>m - r</tex> последних строк матрицы <tex>Q</tex>. Что и требовалось доказать.  :<tex>\Longleftarrow</tex>::Теперь докажем в обратную сторону. Пусть система каких-либо <tex>m - r</tex> строк матрицы <tex>Q</tex> линейно зависима. Для простоты обозначений будем считать, что эта система состоит из последних <tex> m - r </tex> строк матрицы <tex>Q</tex>. Тогда линейно зависима система (5) "урезанных" столбцов, составляющих матрицу <tex>Q_1</tex>. Следовательно, некоторая нетривиальная линейная комбинация (6) "урезанных" столбцов равна 0. С помощью равенства (4) определим столбец <tex>X</tex>. Поскольку система столбцов (2) линейно независима, имеем <tex>X \ne 0</tex>. Столбец Х является решением системы (1), так как он равен линейной комбинации базиса пространства решений этой системы. Тогда столбец <tex>Y</tex>, полученный из столбца <tex>x</tex> отбрасыванием последних m - r нулевых компонент, является ненулевым решением системы (3). Следовательно, линейно зависима система из первых <tex>r</tex> столбцов матрицы <tex>P_1</tex>, что и требовалось доказать.
}}
== См.также ==
* [[Аксиоматизация матроида базами]]
 
== Примечания ==
<references />
== Источники информации ==
34
правки

Навигация