146
правок
Изменения
Нет описания правки
# выполнять некоторую ассоциативную, коммутативную, обратимую операцию <tex> G </tex> на отрезке <tex> [i, j] </tex>.
}}
[[Файл:Bit.jpg|thumb|300px|По горизонтали - содержимое массива <tex>T</tex> <br/> (<tex>T_i</tex> является суммой заштрихованных ячеек массива <tex>A</tex>),<br/> по вертикали - содержимое массива <tex>A</tex>]]
Впервые описано Питером Фенвиком в 1994 году.
{{Лемма
|statement= Все такие <tex> i </tex> удовлетворяют равенству <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>, где <tex> \mid </tex> — это операция побитового логического "ИЛИ".
|proof=Первый элемент последовательности само <tex> k </tex>. Для него выполняется равенство, так как <tex> F(i) < \leqslant i </tex>. По формуле <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как <tex>F(i)</tex> осталось прежним или уменьшилось, а <tex> i </tex> увеличилось. Можем заметить, что если количество единиц в конце не будет совпадать с <tex> k </tex>, то формула <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex> нарушит неравенство, потому что либо само <tex> i </tex> будет меньше, чем k, либо <tex> F(i) </tex> станет больше, чем <tex> k </tex>. Таким образом, перебраны будут только нужные элементы}}
Все <tex>i</tex> мы можем получить следующим образом : <tex>i_{next} = i_{prev} \mid (i_{prev} + 1) </tex>. Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию побитового ИЛИ. Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.