Изменения
→Доказательство принадлежности 3SAT классу NPH
* Если встречается дизъюнкт вида <tex>(x_1 \ldots x_k), k \ge 3</tex>, введем <tex>k-3</tex> новых переменных и заменим наш дизъюнкт на <tex>k-2</tex> дизъюнкта: <tex>(x_1 \vee x_2 \vee z_1) \wedge (x_3 \vee \neg z_1 \vee z_2) \wedge (x_4 \vee \neg z_2 \vee z_3) \wedge \ldots \wedge (x_{k-1} \vee x_k \vee \neg z_{k-3})</tex>. Покажем, что эта замена корректна.
Для этого, сделаем несколько утвержденийдва утверждения:
# Если <tex>(x_{1}^* \ldots x_{k}^*)</tex> - набор значений <tex>x_i</tex>, удовлетворяющий дизъюнкт <tex>(x_1 \vee \ldots \vee x_k)</tex>, то существует такой набор значений <tex>z_{1}^* \ldots z_{k-3}^*</tex>, что каждый из <tex>k-2</tex> новых дизъюнктов также удовлетворен.