Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2015 осень

2268 байт добавлено, 07:48, 25 сентября 2015
Нет описания правки
# Проанализируйте игру "два шага вперед, один назад" для значений $n$ от 2 до 9 на функции $f(x_1, \ldots, x_n)$, равной 1, если строка $x_1x_2\ldots x_n$ не содержит двух единиц подряд.
# Проанализируйте игру "два шага вперед, один назад" для значений $n$ от 2 до 9 на функции $f(x_1, \ldots, x_n)$, равной 1, если строка $x_1x_2\ldots x_n$ представляет собой (возможно дополненную ведущими нулями) двоичную запись простого числа.
# Говорят, что формула имеет вид 2-КНФ, если она имеет вид $(t_{11}\vee t_{12})\wedge(t_{21}\vee t_{22})\wedge\ldots$, где $t_{ij}$ представляет собой либо переменную, либо ее отрицание (в каждом дизъюнкте ровно два терма). Предложите полиномиальный алгоритм проверки, что формула, заданная в 2-КНФ имеет набор значений переменных, на которых она имеет значение 1.
# КНФ называется КНФ Хорна, если в каждом дизъюнкте не более одной переменной находится без отрицания. Пример: $x\wedge(x \vee \neg y \vee \neg z) \wedge (\neg x \vee \neg t)$. Предложите полиномиальный алгоритм проверки, что формула, заданная в форме КНФ Хорна имеет набор аргументов, на котором она равна 1.
# Докажите, что если булеву функцию $f$ можно задать в форме Крома (в виде 2-КНФ), то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$
# Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = f(z_1, ..., z_n) = 1$ $\Rightarrow f(\langle x_1, y_1, z_1\rangle, ..., \langle x_n, y_n, z_n \rangle) = 1$, то булеву функцию $f$ можно задать в форме Крома.
# Докажите, что если булеву функцию $f$ можно задать в форме Хорна, то выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$
# Докажите, что если выполнено следствие: $f(x_1, ..., x_n) = f(y_1, ..., y_n) = 1 \Rightarrow f(x_1\wedge y_1, ..., x_n \wedge y_n) = 1$, то булеву функцию $f$ можно задать в форме Хорна
Анонимный участник

Навигация