Изменения

Перейти к: навигация, поиск

Теорема Гуйя-Ури

6479 байт добавлено, 11:10, 2 января 2016
Новая страница: «= Теорема Гуйя-Ури = {{Определение |definition= Ориентированный сильно связный граф называется...»
= Теорема Гуйя-Ури =

{{Определение
|definition=
Ориентированный сильно связный граф называется '''орсвязаными'''.}}
== Лемма о длине цикла в ориентированном графе ==
{{Лемма
|about=о длине цикла в ориентированном графе
|statement= Пусть <tex>G</tex> {{---}} произвольный ориентированный граф и для каждой вершины <tex>v \in V(G)</tex> выполняется <tex>deg^{out}(v) \geqslant \delta</tex>. Если <tex>\delta \geqslant 2</tex>, то в графе <tex>G</tex> существует простой цикл <tex>C</tex> длины хотя бы <tex>\delta + 1</tex>.
|proof=
Рассмотрим путь максимальной длины <tex>P = v_0 v_1 \dots v_s</tex>. Из последней вершины <tex>v_s</tex> выходит хотя бы <tex>\delta - 1</tex> ребро в вершины, отличные от <tex>v_{s - 1}</tex>. Так как путь <tex>P</tex> максимальный, то продлить его нельзя, а значит, что из <tex>v_s</tex> выходят ребра только в вершины, содержащиеся в пути <tex>P</tex>. Пусть <tex>v_m \in P</tex> {{---}} вершина с наименьшим номером, в которую входит ребро из <tex>v_s</tex>. Тогда во множество <tex>\{v_m \dots v_{s - 1}\}</tex> входят не менее <tex>\delta</tex> ребер, выходящих из <tex>v_s</tex>. То есть в это множестве хотя бы <tex>\delta</tex> вершин. Значит, в цикле <tex>v_m \dots v_{s - 1} v_s</tex> не менее <tex>\delta + 1</tex> вершины.
}}

== Теорема Гуйя-Ури ==
{{Теорема
|author=Гуйя-Ури, Ghouila-Houri
|statement=
Если <tex>G</tex> {{---}} сильно связный ориентированный граф c <tex>n</tex> вершинами и для каждой <tex>v \in V(G)</tex> выполняется <br>
<tex>
\Bigg\{
\begin{matrix}
deg^{in}(v) \geqslant n/2 \\
deg^{out}(v) \geqslant n/2 \\

\end{matrix}
</tex>, <br>
тогда <tex>G</tex> {{---}} гамильтонов.
|proof=
Будем доказывать теорему от противного. Предположим, что это не так. Очевидно, что условие теоремы выполняется при <tex>n = 2</tex> и <tex>n = 3</tex>. Тогда существует орсвязный граф <tex>G</tex> с <tex>n \geqslant 4</tex>, который удовлетворяет условию и при этом не является гамильтоновым. Пусть <tex>C</tex> {{---}} максимальный цикл в <tex>G</tex> длины <tex>k</tex>. По лемме о длине цикла и по предположению о том, что граф не является гамильтоновым, получаем соотношение <tex>1 + n/2 \leqslant k < n</tex>. Теперь рассмотрим <tex>P = v_0 \dots v_l</tex> {{---}} путь максимальной длины <tex>l \geqslant 0</tex> в <tex>G</tex> такой, что никакая вершина этого пути не принадлежит циклу <tex>C</tex>. Тогда <tex>k + l + 1 \leqslant n</tex>. Следовательно, <tex>l \leqslant n - k - 1 \leqslant n - (1 + n/2) - 1 \leqslant n/2 - 2</tex>. Таким образом, <tex>l \leqslant n/2 - 2</tex>. Это значит, что в вершину <tex>v_0</tex> входят как минимум два ребра, выходящие из вершин, лежащих на <tex>C</tex>, а из вершины <tex>v_l</tex> выходят как минимум два ребра, которые входят в вершины, принадлежащие <tex>C</tex> (так как если бы эти вершины не лежали на данном цикле, путь <tex>P</tex> можно было бы продлить). <br>
Пусть <tex>A</tex> {{---}} множество вершин, принадлежащих <tex>C</tex>, ребра из которых приходят в вершину <tex>v_0</tex>, а <tex>a</tex> {{---}} их количество. Тогда <tex>a \geqslant 2</tex>. Для каждой такой вершины следующая за ней в цикле <tex>C</tex> <tex>l + 1</tex> вершина не содержит входящих ребер, начало которых принадлежит <tex>v_l</tex>, иначе граф <tex>G</tex> содержал бы цикл длины <tex>> k</tex>. Заметим, что среди вершин множества <tex>A</tex> должна существовать такая вершина <tex>y</tex>, что следующая за ней <tex>l + 1</tex> вершина в цикле <tex>C</tex> не является ни отцом <tex>v_0</tex>, ни сыном <tex>v_l</tex>. <br>
Рассмотрим оставшуюся <tex>a - 1</tex> вершину множества <tex>A</tex>, отличную от <tex>y</tex>. В следующую за каждой из них, очевидно, не может приходить ребро из <tex>v_l</tex>. Следовательно, как минимум <tex>(a - 1) + (l + 1) = a + l</tex> вершин <tex>C</tex> не являются сыновьями <tex>v_l</tex>, в противном случае, опять же, граф содержал бы цикл длины <tex>> k</tex>. <br>
Так как <tex>P</tex> {{---}} самый длинный путь в <tex>G</tex>, ни одна вершина которого не принадлежит <tex>C</tex>, каждая вершина, ребро из которой приходит в <tex>v_0</tex>, лежит либо на <tex>P</tex>, либо на <tex>C</tex>. Так как <tex>deg^{in}(v_0) \geqslant n/2</tex>, то <tex>a + l \geqslant n/2</tex>, следовательно <tex>deg^{out}(v_l) \leqslant (n - 1) - (a + l) \leqslant (n - 1) - n/2 = n/2 - 1</tex>. Получаем противоречие с условием. Таким образом, предположение неверно, а значит, теорема доказана.
}}
577
правок

Навигация