251
правка
Изменения
м
{{Утверждение
|statement=
Время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.
|proof=
В ходе выполнения алгоритма масштаб <tex> \Delta </tex> принимает следующие значения: <tex> S = \{2^{\lfloor \log_2 U \rfloor}, \ldots, 2^k, \ldots, 2, 1, 0\} </tex>. Тогда <tex> |S| = O(\log U) </tex> {{---}} количество итераций алгоритма.
}}
→Оценка времени работы
== Оценка времени работы ==
{{Лемма
|about=
Максимальный поток в сети <tex> G </tex> ограничен сверху значением <tex> |f_k| + 2^k E </tex>, где <tex> |f_k| </tex> {{---}} значение потока при масштабе <tex> \Delta = 2^k </tex>.
|proof=
[[Файл:Flow_scale_3.png|580px350px|thumb|right|Разрез <tex> C_k </tex>]]
В конце итерации с масштабом <tex> \Delta = 2^k </tex>, сеть <tex> G_{f_k} </tex> может быть разбита на два непересекающихся множества <tex> A_k </tex> и <tex> \overline{A_k} </tex> так, что остаточная пропускная способность каждого ребра, идущего из <tex> A_k </tex> в <tex> \overline{A_k} </tex>, не превосходит масштаба <tex> \Delta </tex>. То есть образуется [[Разрез,_лемма_о_потоке_через_разрез|разрез]] <tex> C_k = \langle A_k, \overline{A_k} \rangle </tex>.
|proof=
На некоторой итерации алгоритма каждый дополняющий путь имеет пропускную способность не меньше <tex> 2^k </tex>.
Дополняющий поток на предыдущем шаге ограничен значением <tex> 2^{k + 1} E </tex>. Следовательно, на каждой итерации количество дополняющих путей не превосходит <tex> 2E </tex>.}}{{Утверждение|statement=Время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.|proof=В ходе выполнения алгоритма масштаб <tex> \Delta </tex> принимает следующие значения: <tex> S = \{2^{\lfloor \log_2 U \rfloor}, \ldots, 2^k, \ldots, 2, 1, 0\} </tex>. Тогда <tex> |S| = O(\log U) </tex> {{---}} количество итераций алгоритма.
Количество итераций алгоритма {{---}} <tex> O(\log U) </tex>, значит, суммарное количество увеличивающих путей {{---}} <tex> O(E \log U) </tex>.
Алгоритм [[Обход_в_ширину|обхода в ширину]] находит каждый дополняющий путь за время <tex> O(E) </tex>. Следовательно, суммарное время работы алгоритма {{---}} <tex> O(E^2 \log U) </tex>.}}
== Псевдокод ==