Изменения

Перейти к: навигация, поиск

Busy beaver

2251 байт добавлено, 01:35, 14 января 2016
Нет описания правки
[[Категория: Теория формальных языков]]
'''Поиск усердных бобров'''(англ. ''busy beaver'') {{---}} известная задача в теории вычислимости. Под усердным бобром в теории вычислимости понимают машину Тьюринга с заданным числом состояний конечного автомата, которая будучи запущенной на пустой ленте, записывает на нее максимальное количество ненулевых символов и останавливается.
 
В данном конспекте будет рассмотрена функция, которая используется в этой задаче для подсчета числа шагов для завершения программы при определенном числе состояний.
{{Определение
|definition =
<b><tex>BB(n)</tex></b> (англ. ''busy beaver fuction'') {{---}} функция от натурального аргумента <tex>n</tex> (busy beaver fuction), равная максимальному числу шагов, которое может совершить программа длиной <tex>n</tex> символов и затем остановиться.
}}
Пусть <tex>f(n)</tex> представлена своим кодом.
Для каждого <tex>n</tex> определим программы вида:
<tex>P_n</tex>(): k = {десятичная запись числа n}; f = f(k); for i = 1 to f + 1do do smth/* шаг программы */;
Каждая такая программа делает как минимум <tex>f(n) + 1</tex> шагов.
}}
* Из этого утверждения '''Вывод:''' доказав предыдущее утверждение, мы проверили, что максимальное число шагов, которое может совершить программа и при этом остановиться, на самом деле растет с большей скоростью, чем любая вычислимая функция. Отсюда следует, что <tex>BB(n)</tex> невычислима. == См. также ==* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%92%D1%8B%D1%87%D0%B8%D1%81%D0%BB%D0%B8%D0%BC%D1%8B%D0%B5_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8 Вычислимые функции]* [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%B0_%D0%A2%D1%8C%D1%8E%D1%80%D0%B8%D0%BD%D0%B3%D0%B0 Машина Тьюринга]
=== Смотрите также =Источники информации==* ''Хопкрофт Д., Мотвани Р., Ульман Д.'' — '''Введение в теорию автоматов, языков и вычислений''', 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2002. — 528 с. : ISBN 5-8459-0261-4 (рус.)* [http://en.wikipedia.org/wiki/Busy_beaver#The_busy_beaver_function Английская Википедия{{---}} Busy_beaver]* [http://is.ifmo.ru/works/_bobri.pdf Федотов П.В., Царев Ф.Н., Шалыто А.А. {{---}} Задача поиска усердных бобров и ее решения]
25
правок

Навигация