Каждая такая программа делает как минимум <tex>f(n) + 1</tex> шагов.
Длина Так как мы рассматриваем <tex>n</tex> в десятичной записи, то длина <tex>p_n</tex> будет равна <tex> \lg n + const </tex>, где <tex>const</tex> {{---}} длина кода без десятичной записи <tex>n</tex>. Пусть <tex>n_0</tex> {{---}} решение уравнения <tex>\lg n + const = n</tex>. Тогда для всех натуральных <tex> n > \left \lceil n_0 \right \rceil </tex> будет выполнено неравенство: <tex> n > len(p_n) \Rightarrow BB(n) \geqslant BB(len(p_n)) > m = f(n) </tex>. Данный переход корректен, так как мы доказали, что <tex>BB(n)</tex> {{---}} монотонно возрастающая функция. Так как <tex>n_0</tex> конечно, то мы всегда можем найти такие значения <tex>n</tex>, при которых будет выполняться полученное неравенство. Отсюда следует, что утверждение доказано.
}}
----