37
правок
Изменения
док-во теоремы Татта-Бержа
<tex>\mathrm{\alpha}(G) = \min\limits_{U \in V} \{\dfrac{1}{2}(|V|+|U|-\mathrm{odd}(G - U)\}. </tex>
|proof=
Предположим <tex>G</tex> {{---}} связный (формула аддитивности), иначе мы можем применить индукцию к компонентам <tex>G</tex>. Докажем Приведем доказательство по индукции для количества по числу вершинв графе. <br><u> ''База индукции: одна вершина {{---}} тривиально''</u> <br>Очевидно, для <tex> n = 1 </tex> утверждение верно. <br>Шаг (рассмотрим <u> ''Индукционный переход:''</u> <br>Рассмотрим два случая):
# <tex>G</tex> {{---}} содержит вершину <tex>v</tex> покрытую всеми максимальными паросочетаниями (например средняя вершина)
#: Тогда <tex> \mathrm{\alpha}(G - v) = \mathrm{\alpha}(G) - 1 </tex>.
#: По индукции, формула Тутта-Бердже содержит <tex>G - v</tex> для некоторого множества <tex>U'</tex>.#: Пусть <tex>U = U' \bigcup v</tex>. Тогда:
#: <tex> \mathrm{\alpha}(G) = \mathrm{\alpha}(G - v) + 1 = \dfrac{1}{2}(|V - v|+|U - v| - \mathrm{odd}(G - v - (U - v))) + 1 = </tex>
#: <tex> = \dfrac{1}{2}(|V| - 1 + |U|- 1 - \mathrm{odd}(G - U)) + 1 = \dfrac{1}{2}(|V|+|U| - \mathrm{odd}(G - U)). </tex>
#:
# Для каждой вершины <tex>v</tex> есть максимальное паросочетание <tex>M</tex> которое не покрывает <tex>v</tex> (например <tex>C_3</tex>)
#:
#: Покажем, что существует паросочетание размера <tex> \dfrac{1}{2}(|V| - 1) </tex>, из которого следует теорема (при <tex> U = \emptyset </tex>).
#: <u> ''От противного:''</u>
#: Предположим что любое максимальная паросочетание <tex> M </tex> не покрывает, по крайней мере, две различные вершины <tex> u </tex> и <tex> v </tex>. Среди всех таких <tex> (M, u, v) </tex> выберем их так, что <tex> \mathrm{d}(u, u) </tex> в <tex> G </tex> {{---}} минимально.
#: Если <tex> \mathrm{d}(u, u) = 1 </tex>, то <tex> u </tex> и <tex> v </tex> являются смежными, и, следовательно, мы можем увеличить <tex> M </tex>, что противоречит его максимальности.
#: Значит <tex> \mathrm{d}(u, u) \geqslant 2 </tex>, и, следовательно, мы можем выбрать промежуточную вершину <tex> t </tex> на пути <tex> u-v </tex> и <tex> N </tex> максимальное паросочетание, такое что симметрическая разность с <tex> M </tex> минимальна. Так как <tex> (M, u, v) </tex> минимально, то <tex> N </tex> должно охватывать <tex> u </tex> и <tex> v </tex> так, что есть другая вершина <tex> x </tex>, покрытая только в <tex> M </tex>.
#: Пусть <tex> y </tex> будет вершиной покрытой с <tex> x </tex> в <tex> M </tex> и заметим <tex> y \neq t </tex> (иначе можно было бы добавить к <tex> N </tex>). Пусть <tex> z </tex> будет вершиной покрытой с <tex> y </tex> в <tex> N </tex> и заметим <tex> z \neq x </tex> (так как <tex> x </tex> не покрыто в <tex> N </tex>). Тогда <tex> N - yz + xy </tex> {{---}} паросочетание, которое имеет с <tex> M </tex> меньшую симметрическую разность, что противоречит выбору <tex> N </tex>.
}}
{{Определение