Изменения

Перейти к: навигация, поиск

Совершенное паросочетание в кубическом графе

3 байта добавлено, 20:07, 28 января 2016
м
Теорема Фринка (Frink)
|proof=
Обозначим компоненты графа <tex>G(V - \{c, d\})</tex> как <tex>A, B, E, F</tex>, которые содержат вершины <tex>a, b, e, f</tex> соответственно. Так как <tex>G</tex> не имеет мостов (соответственно <tex>p</tex> не является мостом) должно существовать ребро, соединяющее одну из компонент <tex>A</tex> или <tex>B</tex>, с одной из компонент <tex>E</tex> или <tex>F</tex>. Без потери общности предположим, что <tex>A</tex> соединено с <tex>E</tex>. Заметим, что рёбра <tex>(b, c), (d, f)</tex> так же не являются мостами, значит возможны три случая (с учётом изоморфизма) (рисунок <tex>3</tex>):
* компонента <tex>B</tex> соединена с <tex>F</tex>,* компонента <tex>B</tex> соединена с <tex>E</tex> и компонента <tex>E</tex> соединена с <tex>F</tex>,* компонента <tex>A</tex> соединена с <tex>B</tex> и компонента <tex>E</tex> соединена с <tex>F</tex>.
Во всех трёх случаях если <tex>G(V - \{c, d\})</tex> расширить рёбрами <tex>(a, f), (b, e)</tex> (получим граф <tex>G'</tex>), добавленные рёбра будут лежать на некотором цикле в <tex>G'</tex> (рисунок <tex>4</tex>). Так же, для любой пары вершин <tex>u, v</tex> <math>\in</math> <tex>\{a, b, e, f\}</tex> существует цикл в <tex>G'</tex>, содержащий данные вершины. Чтобы доказать, что <tex>G'</tex> двусвязен, нужно показать, что каждое ребро <tex>r</tex> из <tex>G'</tex> лежит на некотором цикле в <tex>G'</tex>. Пусть цикл <tex>C</tex> в <tex>G</tex> содержит <tex>r</tex> (такой цикл существует, так как <tex>G</tex> двусвязен). Если <tex>C</tex> не проходит через вершины <tex>c, d</tex> тогда <tex>C</tex> так же является циклом в <tex>G'</tex>, иначе построим цикл <tex>C'</tex> графа <tex>G'</tex> из <tex>C</tex> следующим образом:
* если путь <tex> x - c - d - y </tex> <math>\in</math> <tex> C </tex>, <tex> x </tex> <math>\in</math> <tex> \{a, b\} </tex>, <tex> y </tex> <math>\in</math> <tex> \{e, f\} </tex>, удалим этот путь и добавим любой другой из <tex> x </tex> в <tex> y </tex> в <tex> G' </tex>, не содержащий <tex>r</tex> (такой путь всегда существует, так как <tex> x </tex> и <tex> y </tex> принадлежат некоторому циклу в <tex> G' </tex>),
84
правки

Навигация