Изменения
→Идея
# <tex>i \leqslant r</tex>. Тогда попробуем воспользоваться значениями, посчитанным ранее. Отразим нашу текущую позицию внутри палиндрома <tex>[l;r] : j = (r - i) + l</tex>. Поскольку <tex>i</tex> и <tex>j</tex> — симметричные позиции, то мы можем утверждать, <tex>d1[i] = d1[j]</tex>. Однако надо не забыть про один граничный случай: что если <tex>i + d1[j] - 1</tex> выходит за границы самого правого палиндрома? Так как информации о том, что происходит за границами это палинлрома у нас нет, то необходимо ограничить значение <tex>d1[i]</tex> следующим образом: <tex>d1[i] = min(r - i, d1[j])</tex>. После этого запустим наивный алгоритм, который будет увеличивать значение <tex>d1[i]</tex>, пока это возможно.
После каждого шага важно не забывать обновлять значения <tex>[l;r]</tex>.
Заметим, что массив <tex>d2</tex> считается аналогичным образом, нужно лишь немного изменить индексы.