276
правок
Изменения
→Нахождение старшего единичного бита
Рассмотрим некоторое число, представим его как <tex>0\dots01b \dots b</tex>, где <tex>b</tex> {{---}} любое значение бита. Тогда, если совершить битовый сдвиг этого числа вправо на <tex>1</tex> и произвести побитовое ИЛИ результата сдвига и исходного числа, мы получим результат <tex>0\dots011b \dots b</tex>. Если мы повторим эту последовательность действий над полученным числом, но устроим сдвиг на <tex>2</tex>, то получим <tex>0\dots01111b \dots b</tex>. При каждой следующей операции будем увеличивать модуль сдвига до следующей степени двойки. После некоторого количества таких операций (зависит от разрядности числа) мы получим число вида <tex>0\dots01\dots1</tex>. Тогда результатом выполнения действий <tex>x - (x \texttt{ >> }1)</tex> будет число, состоящее только из старшего бита исходного числа.
<code>
'''intint32''' greatestBit(x: '''int32'''): power = 1 '''for''' i = 1..<tex>\log_2{n32}</tex>: <font color = green>// n {{---}} разрядность числа</font> x |= x >> power power <<= 1 result = '''return''' x - (x >> 1)
</code>