577
правок
Изменения
Opij1di
,→Асимптотика
#:<tex>(b)</tex> Пусть <tex>h^V(T) < m</tex>. В расписании для множества работ <tex>V</tex> все стадии обработки работы <tex>i</tex> (<tex>k</tex> стадия обработки {{---}} выполнение работы на <tex>k</tex> машине) должны быть назначены на временные интервалы из отрезка <tex>[T - 1, d_i]</tex>, так как <tex>T \leqslant d_i - m</tex> и в период времени <tex>[T - 1, T]</tex> есть свободная машина. Все стадии обработки работ в расписании для <tex>U</tex>, назначенные на временные интервалы из отрезка <tex>[T - 1, d_i]</tex>, в расписании для <tex>V</tex> назначены на временные интервалы из того же отрезка <tex>[T - 1, d_i]</tex>. И так как <tex>U</tex> по условию может быть выполнено вовремя, верно неравенство <tex>(T - 1)m \geqslant \sum\limits_{t = 1}^{T - 1}h^U(t) = \sum\limits_{t = 1}^{T - 1}h^V(t)</tex>. Следовательно, (2) выполняется и для <tex>T - 1</tex>.
}}
Пусть <tex>k = |U|</tex> {{---}} мощность множества <tex>U</tex>. Тогда <tex>\sum\limits_{j = 1}^{d_i - m}(m - h^U(j)) = m(d_i - m) - \sum\limits_{j = 1}^{d_i - m}h^U(j) = m(d_i - m) - (km - \sum\limits_{j = d_i - m + 1}^{d_i}h^U(j))</tex>. Таким образом, (1) равносильно <tex>m(d_i - m) - (km - \sum\limits_{j = 1}^{m}h^U(d_i - m + j)) + x(d_i) \geqslant m</tex> (3). Мы пришли к тому, что нам достаточно знать только значения <tex>h^U(d_i - m + 1) \ldots h^U(d_i)</tex> и мощность <tex>k</tex> множества <tex>U</tex>, чтобы проверить, выполняется ли (3), то есть может ли множество <tex>V = U \cup \{i\}</tex> быть выполнено вовремя. Очевидно, что (3) может быть вычислено за время <tex>O(m)</tex>.<br>Чтобы решить задачу <tex> O \mid p_{i,j} = 1, d_i \mid - </tex> для работ <tex>i = 1, 2 \ldots n</tex> с временами окончаний <tex>d_1 \leqslant d_2 \leqslant \ldots \leqslant d_n</tex>, для каждого <tex>i \in [1, n]</tex> мы проверяем, может ли множество <tex>U_i = \{1 \ldots i\}</tex> быть выполнено вовремя, если <tex>U_{i - 1}</tex> было выполнено вовремя. Этот шаг осуществляется за <tex>O(m)</tex> проверкой условия (3). Более того, по лемме значения <tex>h^{U_i}(d_i - m + 1) \ldots h^{U_i}(d_i)</tex> могут быть так же вычислены за <tex>O(m)</tex>. Следовательно, алгоритм может быть реализован за время <tex>O(mn)</tex>, если на вход дают работы в порядке неубывания времен окончания.
== Доказательство корректности ==