81
правка
Изменения
Нет описания правки
{{Задача
|definition=Задача <texwikitex> 1 Дано $n$ работ, которые надо выполнить на одной машине, причем $i$-ая работа выполняется $p_i$ времени. Для каждой работы задана монотонно неубывающая функция $f_i$. Работы можно прерывать, у каждой работы есть время появления $r_{i}$. Также между работами заданы отношения в виде ориентированного графа без циклов: если существует ребро $a \mid precto b$, pmtnто работа $a$ должна завершиться до начала выполнения работы $b$. Необходимо построить такое расписание, r_i \mid чтобы величина $f_{max} </tex> является обобщением [[Правило Лаулера|<tex>1 = \mid prec max\mid f_limits_{j=1..n}{f_j(C_j)}$, где $C_j$ {{max---}}время окончания выполнения $j$-ой работы, была минимальна.</texwikitex>]], но здесь у работ также есть времена появления, раньше которых их делать запрещено, и их можно прерывать.
}}
Задача <tex> 1 \mid prec, pmtn, r_i \mid f_{max} </tex> является обобщением [[Правило Лаулера|<tex>1 \mid prec \mid f_{max}</tex>]], но здесь у работ также есть времена появления, раньше которых их делать запрещено, и их можно прерывать.
== Алгоритм ==
Работу будем обозначать просто ее номером (<tex> (i )</tex>), при этом, номера работ могут меняться в зависимости от того, по какому параметру они отсортированы. Время появления работы — <tex> r_i r[i]</tex>, время, требуемое для ее выполнения — <tex> p_i p[i] </tex>. Множество ребер графа обозначается как <tex> E </tex>.
=== Modify Идея алгоритма===Для началаБудем решать задачу рекурсивно. Разобьем множество работ на подмножества (блоки), модифицируем времена появления внутри которых не будет перерыва между выполнением работ. Если работа <tex> j </tex> зависит от <tex> i </tex>После этого для каждого из блоков найдем работу, токоторую выгоднее всего выполнить последней, очевидно, она не может быть начата раньшеудалим работу из соответствующего блока и повторим разбиение на подблоки для оставшихся работ. Пустые промежутки между подблоками, чем закончится выполнение <tex> i </tex>полученными из данного блока, поэтому нужно заменить <tex> r_j </tex> на <tex> \max(r_jзаполним выбранной работой. Повторим рекурсивно для каждого из полученных подблоков. Как будет показано далее, r_i + p_i) </tex>данный алгоритм строит корректное и оптимальное расписание. АлгоритмМожно заметить, делающий эточто если на каждом этапе будет получаться всего один блок, представлен ниже (работы рассматриваются алгоритм выродится в порядке топологической сортировки):[[Правило_Лаулера|алгоритм Лаулера]].
После выполнения этого алгоритма для любых двух работ <tex> i, j </tex>, таких, что <tex> j </tex> зависит от <tex> i </tex>, выполняется <tex> rm[j] > rm[i] </tex>, поэтому, при рассмотрении работ в порядке неубывания времен их появления, они также будут топологически отсортированы. === Blocks Разбиение на блоки ===Здесь и далее считается, что работы отсортированы в порядке неубывания модифицированных <tex> r_i rm_i </tex>.
Станок, выполняющий работы, выполняет работу в некоторые интервалы времени и простаивает в остальное время. Следующий алгоритм разбивает множество работ на блоки, внутри которых станок работает без простоя.
'''Структура блока''' '''struct''' Block '''int''' start Blocks(<texfont color = "darkgreen"> \{ 1 \ldots n \} // Время начала выполнения блока</texfont>) '''int''' time <texfont color = "darkgreen"> j \leftarrow 0 // Время, затрачиваемое на соответствующий блок</texfont> '''int''' end <texfont color = "darkgreen"> t \leftarrow 0 // Время конца выполнения блока </texfont> '''forint[]''' jobs <texfont color = "darkgreen"> i \in \{ 1 \ldots n \} // Номера работ</texfont> '''ifvoid''' add() <texfont color = "darkgreen"> t < r_i // Добавляет работу в конец jobs[] </texfont> Нетрудно заметить, что переменная <tex> t \leftarrow r_i mathrm{end}</tex> получается из суммы <tex> j \leftarrow j + 1 mathrm{start}</tex> и <tex> B_j \leftarrow B_j \cup i mathrm{time}</tex> . Используется для читаемости и уменьшения кода <tex> t \leftarrow t + p_i mathrm{Decompose}</tex>. Можно воспринимать как макроподстановку. '''returnАлгоритм разбиения''' <tex> {B_1, \ldots, B_j} </tex>
Если значение <tex>n</tex> равно нулю, то считаем, что алгоритм <tex>\mathrm{Blocks}</tex> возвращает пустое множество. Определим время начала блока <tex> B_j </tex> как <tex>s_j = \min\limits_{i \in B_j} r_i rm_i </tex>, а время конца — как <tex> e_j = s_j + \sum\limits_{i \in B_j} p_i </tex>.
{{Лемма
|statement=
Существует оптимальное расписание, такое, что все во все временные интервалы <tex> [s_j; e_j] </tex>, соответствующие блокам <tex> B_j </tex>, построенным алгоритмом <tex>\mathrm{Blocks}</tex>, станок работает без простоя.
|proof=
Возьмем произвольное оптимальное расписание <tex> S </tex>, в нем деление на блоки может также быть произвольным. Найдем первый такой временной интервал <tex> [s_j; e_j] </tex>, что в <tex> S </tex> есть период простоя внутри <tex> [s_j; e_j] </tex> (если таких периодов несколько, будем рассматривать первый из них). Обозначим его за <tex> [s; e] </tex>.
Возьмем некоторую работу <tex> i </tex>, такую, что она начинается позже, чем в момент времени <tex> s </tex>, не имеет в графе зависимостей предков, завершаемых позже, чем в момент <tex> s </tex> и <tex> r_i rm_i \le leqslant s </tex>. Такая работа обязательно существует, иначе для множества работ, выполняемых позже, чем в момент <tex> s </tex>, было бы <tex> r = \min\limits_{k \in T} r_k rm_k > s </tex>, и внутри блока <tex> B_j </tex> был бы простой <tex> [s_j; r] </tex>, что невозможно по построению алгоритма Blocks. Очевидно, мы можем начать выполнять ее в момент времени <tex> s </tex> и полностью, либо частично заполнить простой <tex> [s; e] </tex>; так как <tex> f_i </tex> — неубывающая функция, то ответ останется оптимальным. Повторяя этот процесс, мы за конечное число шагов придем к оптимальному расписанию с требуемым свойством.
}}
=== Decompose Декомпозиция ===Допустим, у нас есть блок работ, который можно выполнить без прерываний. Общая идея алгоритма <tex>\mathrm{Decompose }</tex> следующая: найдем работу <tex> i </tex>, которую выгоднее всего выполнить последней. Разобъем оставшееся множество работ на блоки, решим задачу для этих блоков рекурсивно и вставим <tex> i </tex> в промежутки между ними, до них и после них, начиная с <tex> r_i rm_i </tex>. Псевдокод этого алгоритма представлен ниже. Алгоритм принимает множество блоков и изначально пустое расписание, при каждом вызове заполняет пробелы в расписании очередной работой и обновляет ответ. Возвращает оптимальное расписание и соответствующее значение <tex>f_{max}</tex>.
{{Теорема
|statement=
Расписание для блока, построенное алгоритмом <tex>\mathrm{Decompose}</tex>, является корректным и оптимальным.
|proof=
Докажем сначала корректность.
Убедимся, что порядок выполнения работ, заданный графом зависимостей, не нарушается. Заметим, что в разбиении <tex> B \setminus l </tex> на блоки существует не более одного блока <tex> B_0 </tex>, расположенного до момента времени <tex> r_l </tex> — иначе после вставки <tex> l </tex> в промежутки между блоками, <tex> B </tex> выполнялся бы с прерываниями. Далее, заметим, что все интервалы времени, на которые назначается работа из блока <tex> B_j </tex>, находятся внутри интервала <tex> [s_j; e_j] </tex>; это относится и к блоку <tex> B_0 </tex>. Из этих двух наблюдений, а также того, что все работы со временами появления меньше, чем <tex> r_l rm_l </tex>, будут помещены в блок <tex> B_0 </tex>, следует, что порядок выполнения будет правильным.
Также для корректности требуется, чтобы работы выполнялись не раньше, чем они появляются. Так как время выполнения работы определяется только в строке 4 строках 5-9 алгоритма, которая соответствует которые соответствуют этому требованию, то условие выполняется.
Найдем теперь нижнюю оценку на <tex> f_{max} </tex>. Пусть <tex> f_{max}(J) </tex> — ответ для множества работ <tex> J </tex>.
Очевидно, для любой работы <tex> j \in J </tex> выполняется <tex> f_{max}(J) \ge geqslant f_{max}(J \setminus j) </tex>, значит, <tex> f_{max}(J) \ge geqslant \max\limits_{j \in J} f_{max}(J \setminus j) </tex>.
Также, так как в оптимальном решении какая-то работа без потомков обязательно заканчивается в блоке <tex> B </tex>, то <tex> f_{max}(J) \ge geqslant f_l(e) </tex>.
Отсюда следует <tex> f_{max}(J) \ge geqslant \max(f_l(e), \max\limits_{j \in J} f_{max}(J \setminus j)) </tex>. По псевдокоду алгоритма видно, что его ответ достигает этой нижней оценки.
}}
=== Общий алгоритм ===
Выполним <tex>\mathrm{Modify}</tex>, после чего разобъем все множество работ на блоки и для каждого блока запустим <tex>\mathrm{Decompose()}</tex>:
Из доказанной ранее леммы следует, что <tex> f_{max}(\{ 1 \ldots n \}) = \max\limits_{j} f_{max}(B_j) </tex>, поэтому расписание для всего множества работ, поделенного на блоки, также будет оптимальным и корректным.
Обозначим за <tex> P(n) </tex> время, необходимое для выполнения алгоритма MakeSchedule на n работах. Очевидно, для корректно определенной функции P в силу структуры алгоритма должно выполняться неравенство:
<tex> P(n) \ge geqslant сn + \sum\limits_{i = 1}^{k} P(n_i) </tex>
Здесь <tex> n_i </tex> - размер блока с номером <tex> i </tex>, построенного алгоритмом Blocks(). Заметим, что <tex> \sum\limits_{i = 1}^{k} n_i = n - 1</tex>.
Если <tex> P(n) = an^2 </tex>, то имеем:
<tex> an^2 \ge geqslant cn + a \sum\limits_{i = 1}^{k} n_i^2 </tex>
Так как <tex> n^2 > (n - 1)^2 = \Big(\sum\limits_{i = 1}^{k} n_i\Big)^2 = \sum\limits_{i = 1}^{k} n_i^2 + 2\sum\limits_{\substack{i, j = 1\\ i \ne j}}^{k} n_i n_j </tex>, то можно переписать неравенство в следующем виде:
<tex> 2a \sum\limits_{\substack{i, j = 1\\ i \ne j}}^{k} n_i n_j \ge geqslant cn </tex>
Чтобы получить максимальную нижнюю оценку на <tex> a </tex>, оценим снизу <tex> \sum\limits_{i, j = 1}^{k} n_i n_j </tex>:
<tex> \sum\limits_{\substack{i, j = 1\\ i \ne j}}^{k} n_i n_j \ge geqslant \sum\limits_{\substack{i, j = 1\\ i \ne j}}^{k} 1 \cdot n_j = \sum\limits_{j = 1}^{k} (k - 1) n_j = (k - 1) (n - 1) \ge geqslant \dfrac{nk}{4}</tex>
Значит, при <tex> a \ge geqslant \dfrac{ccn}{2} \cdot \dfrac{n4}{\dfrac{nk}{4}} = \dfrac{2c}{k} </tex> требуемое неравенство будет выполняться.
}}
==См. также==*[[Правило_Лаулера|Правило Лаулера]] ==Источникиинформации==* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 379 63-67 стр. {{---}} ISBN 978-3-540-69515-8
[[Категория: Дискретная математика Алгоритмы и алгоритмыструктуры данных]]
[[Категория: Теория расписаний]]