Изменения

Перейти к: навигация, поиск
м
Нет описания правки
Любому алгоритму сортировки сравнениями можно сопоставить [[Дерево поиска, наивная реализация|дерево]]. В нем узлам соответствуют операции сравнения элементов, ребрам {{---}} переходы между состояниями алгоритма, а листьям {{---}} конечные перестановки элементов (соответствующие завершению алгоритма сортировки). Необходимо доказать, что высота такого дерева для любого алгоритма сортировки сравнениями не меньше чем <tex>\Omega(n \log n)</tex>, где <tex>n</tex> {{---}} количество элементов.
Ограничимся рассмотрением сортировки перестановок <tex>n</tex> элементов. При сравнении некоторых двух из них, существует два возможных исхода (<tex>a_i < \leqslant a_j</tex> и <tex>a_i > a_j</tex>), значит, каждый узел дерева имеет не более двух сыновей. Всего существует <tex>n!</tex> различных перестановок <tex>n</tex> элементов, значит, число листьев нашего дерева не менее <tex>n!</tex> (в противном случае некоторые перестановки были бы не достижимы из корня, а, значит, алгоритм не правильно работал бы на некоторых исходных данных).
Докажем, что двоичное дерево с не менее чем <tex>n!</tex> листьями имеет глубину <tex>\Omega(n \log n)</tex>. Легко показать, что двоичное дерево высоты <tex>h</tex> имеет не более чем <tex>2^h</tex> листьев. Значит, имеем неравенство <tex>n! \leqslant l \leqslant 2^h</tex>, где <tex>l</tex> {{---}} количество число листьев. Прологарифмировав его, получим:
<tex> h \geqslant \log_2 n! = \log_2 1 + \log_2 2 + \ldots + \log_2 n ></tex> <tex> \dfrac{n}{2} \log_2 \left(\dfrac{n}{2}\right) = \dfrac{n}{2}(\log_2 n - 1) = \Omega (n \log n)</tex>

Навигация