Изменения
→Нормальная и нормализованная форма
== Нормальная и нормализованная форма ==
'''Нормальной формой''' (англ. ''normal form'') числа с плавающей запятой называется такая форма, в которой мантисса (без учёта знака) в десятичной системе находится на полуинтервале <tex>[0; 1)</tex>. Такая форма записи имеет недостаток: некоторые числа записываются неоднозначно (например, <tex>0{,}0001</tex> можно записать в 4 формах — <tex>0{,}0001</tex> \times <tex>10</tex><sup><tex>0</tex></sup>, <tex>0{,}001</tex> \times <tex>10</tex><sup><tex>−1</tex></sup>, <tex>0{,}01</tex> \times <tex>10</tex><sup><tex>−2</tex></sup>, <tex>0{,}1</tex> \times <tex>10</tex><sup><tex>−3</tex></sup>), поэтому распространена также другая форма записи — '''нормализованная''' (англ. ''normalized''), в которой мантисса десятичного числа принимает значения от <tex>1</tex> (включительно) до <tex>10</tex> (не включительно), а мантисса двоичного числа принимает значения от <tex>1</tex> (включительно) до <tex>2</tex> (не включительно). То есть в мантиссе слева от запятой до применения порядка находится ровно один знак. В такой форме любое число (кроме <tex>0</tex>) записывается единственным образом. Ноль же представить таким образом невозможно, поэтому стандарт предусматривает специальную последовательность битов для задания числа <tex>0</tex> (а заодно и некоторых других [[#Особые значения чисел с плавающей точкой|полезных чисел]], таких как <tex>-\infty</tex> и <tex>+\infty</tex>).
Так как старший двоичный разряд (целая часть) мантиссы вещественного числа в нормализованном виде всегда равен «<tex>1</tex>», то его можно не записывать, сэкономив таким образом один бит, что и используется в стандарте IEEE 754. В позиционных системах счисления с основанием большим, чем <tex>2</tex> (в троичной, четверичной и др.), этого замечательного свойства нет (ведь целая часть там может быть не только единицей).
== Типы чисел с плавающей точкой (по IEEE 754) ==