Изменения

Перейти к: навигация, поиск

Фундаментальные циклы графа

130 байт добавлено, 11:18, 16 октября 2016
Нет описания правки
Рассмотрим остов <tex>T</tex> графа <tex>G</tex>. <tex>e_1,...\ldots,e_{s}</tex> — все ребра графа <tex>G</tex>, которые не входят в остов <tex>T</tex>. При добавлении <math>e_{i}</math> образуется простой цикл <tex>C_{i}</tex>. Семейство циклов <tex>C_1 ... \ldots C_{s}</tex> называется '''фундаментальными циклами графа <tex>G</tex> относительно остова <tex>T</tex>'''.
[[Файл:Fundomential.png|380px|центр|thumb|Пример фундаментального цикла в графе. <font color=#ED1C24>Красным</font> выделен фундаментальный цикл.]]
|proof =
Рассмотрим остов <tex>T</tex> графа <tex>G</tex> и фундаментальные циклы <tex> C_1 ... \ldots C_s </tex> относительно остова <tex>T</tex>. В каждом цикле есть ребро <tex>e_i</tex>, которое принадлежит ровно одному из <tex> C_1 ... \ldots C_{s} </tex>. Поэтому сумма различных фундаментальных циклов относительно остова <tex>T</tex> не является пустым графом, из чего следует, что <tex> C_1 ... \ldots C_s </tex> линейно независимы.
Докажем, что любой цикл из циклического пространства графа <tex>G</tex> является суммой фундаментальных циклов. Пусть <tex>Z</tex> — цикл циклического пространства графа <tex>G</tex>, <tex> e_1 ... \ldots e_{k} </tex> ребра принадлежащие <tex>Z</tex> и не принадлежащие <tex>T</tex>. Рассмотрим граф <tex> F = Z \oplus C_1 \oplus ... \ldots \oplus C_{k} </tex>. Каждое из ребер <tex> e_{t} , t = 1,..\ldots ,k </tex> встречается ровно в двух слагаемых — <tex>Z</tex> и <tex>C_{k}</tex>. Значит <tex>F</tex> содержит только ребра из <tex>T</tex>. Так как <tex> C_1 ... \ldots C_{k} </tex> простые циклы, то степени всех их вершин четны, степени вершин <tex>Z</tex> тоже четны по [[Циклическое пространство графа|лемме]], значит степени всех вершин <tex>F</tex> четны. Если <tex>F</tex> непустой граф, то в <tex>F</tex> есть цикл, значит цикл есть и в <tex>T</tex>. Значит <tex>F</tex> пустой граф, откуда следует что <tex>Z = C_1 \oplus ... \ldots \oplus C_{k} </tex>.
}}
Анонимный участник

Навигация