113
правок
Изменения
м
→Критерии Делоне для ребер
[[Файл:dol2.png|right]]
Из глобального в локальный очевидно, докажем обратно.
Предположим противное, то есть найдётся такая плоскость, что вершины треугольников при ребре <tex>AB</tex> лежат под ней, но существует какая-то вершина <tex>F</tex> над ней. Проведём окружность с центром в сфере через <tex>AB</tex> и выберем треугольник лежащий в одной полусфере с точкой <tex>F</tex>, назовём его <tex>ABC</tex>. Точка <tex>EF</tex> лежит над плоскостью <tex>ABC</tex> <tex>\implies</tex> <tex>F</tex> лежит внутри окружности около <tex>ABC</tex>. Возьмем треугольника при ребре, в чьем сегменте оказалась точка <tex>F</tex> и назовем его <tex>ABC</tex>. Если не существует смежный с ним треугольник при вершине <tex>F</tex>, то повторим итерацию, иначе противоречие с локальным критерием Делоне.
}}
{{Утверждение