Изменения
→Критерии Делоне для ребер
Из треугольника в ребра: если для каждого треугольника выполнен критерий, то для каждого ребра можно рассматривать плоскость при любом треугольнике при ребре.
Обратно: Рассмотрим треугольник <tex>ABC</tex>, для каждого из ребра можно провести плоскость, такую что все точки будут лежать не выше её. Три плоскости образуют трехмерный угол, снаружи которого нет точек (снаружи == выше каждойплоскости при ребре). В пересечении угла и плосокости <tex>ABC</tex> образуется тетраэдр. Если в нем нет точек, значит точек нету и над плоскостью треугольника (точек снаружи тетраэдра нету), значит глобальный критерий выполняется. Проверим это.
Пусть в нем есть точки, тогда эти точки оказались внутри треугольника, тогда это не триангуляция.
}}