Изменения

Перейти к: навигация, поиск
Диофантовы уравнения
<tex>P(x_1\ldots x_n)=0</tex>, где <tex>P</tex> {{---}} многочлен с целыми коэффициентами. <tex>(1)</tex>
}}
== Примеры ==
* <tex>x^n + y^n = z^n</tex>:
** При <tex>n=2</tex> решениями этого уравнения являются пифагоровы тройки.
** согласно Великой теореме Ферма это уравнение не имеет ненулевых целых решений при <tex>n>2</tex>.
* <tex>x^2 - n y^2 = 1</tex>, где параметр <tex>n</tex> не является точным квадратом — уравнение Пелля.
* <tex>x^z - y^t = 1</tex>, где <tex>z, t>1</tex>, — уравнение Каталана.
* <tex>\sum_{i=0}^n a_i x^i y^{n-i} = c</tex> при <tex>n\ge 3</tex> и <tex>c\ne 0</tex> — уравнение Туэ.
Диофант искал решение этих уравнений в рациональных числах, Гильберт спрашивал про решение диофантовых уравнений в целых числах.
}}
Аббревиатура в названии последней теоремы образована из первых букв фамилий математиков Мартина Девиса (англ. Martin ''Davis''), Хилари Патнэма (англ. ''Hilary Putnam''), Джулии Робинсон (англ. ''Julia Robinson'') и Юрия Матиясевича. Подробное доказательство неразрешимости десятой проблемы Гильберта можно прочитать здесь <ref>
Davis Martin Hilbert's tenth problem is unsolvable {{---}} Amer. Mathtex. Monthly., V.80, №3 1973,p. 233–269.</ref>.
Пусть дано множество <tex>M</tex> натуральных чисел и нужно найти алгоритм, который по каждому натуральному <tex>n</tex> определяет, принадлежит это <tex>n</tex> множеству <tex>M</tex> или нет.Такой алгоритм существует тогда и только тогда, когда множество <tex>M</tex> разрешимо. Для отрицательного решения десятой проблемы Гильберта достаточно было доказать диофантовость каждого перечислимого множества, то есть по каждому перечислимому множеству <tex>M</tex> уметь строить такое диофантово уравнение, <tex>P(y,x_1\ldots x_k)=0</tex>, которое имело бы натуральные решения <tex>x_1\ldots x_k</tex> для всех <tex>y</tex>, принадлежащих <tex>M</tex> и только для таких <tex>y</tex>. Тогда, взяв в качестве <tex>M</tex> перечислимое, но неразрешимое множество, можно было бы получить, что для соответствующего уравнения <tex>P(y,x_1\ldots x_k)=0</tex> нет общего алгоритма, который по каждому натуральному <tex>y</tex> давал бы ответ на вопрос о существовании у этого уравнения натуральных решений. Если бы этот алгоритм существовал, то можно было бы за конечное число шагов узнать, имеет ли уравнение <tex>P(0,x_1\ldots x_k)=0</tex> решение, то есть принадлежит ли число <tex>0</tex> множеству <tex>M</tex>, имеет ли уравнение <tex>P(1,x_1\ldots x_k)=0</tex> решение и так далее. Получилось бы, что существует алгоритм, который по каждому натуральному <tex>y</tex> за конечное число шагов определяет, принадлежит <tex>y</tex> множеству <tex>M</tex> или нет. Тогда, в соответствии с тезисом Черча, множество <tex>M</tex> было бы разрешимым вопреки выбору этого множества.
Анонимный участник

Навигация