Изменения

Перейти к: навигация, поиск

Объём

2751 байт добавлено, 07:37, 9 декабря 2016
ВЫЧИСЛЕНИЕ ПОВОРОТА
Матрицы одинакового знака, и стоящие перед ними коэффициенты положительны. Значит, у нашей точки будет тот же знак определителя, что и у <tex>p_1</tex> и <tex>p_2</tex>.
}}
Хорошая лемма, пользоваться ей мы, конечно, не будем.
Проблема в том, что нужно показать, что любая непрерывная кривая не может пройти из точки одного множества в точку другого множества не пересекая плоскость.
Но для этого нам необходимо понятие непрерывности, а непрерывность связана с топологией. А у нас есть только афинное пространство, но нет топологии.
Пример с Парижской железнодорожной метрикой. '''TOTO'''
 
Можно было бы воспользоваться аналогом леммы Жордана о том, что любая замкнутая кривая без самопересечений делит пространство на две области, но у нас нет области, потому что понятие области связано с топологией.
 
В афинном пространстве можно вполне естественно ввести евклидовскую метрику: ввести скалярное произведение, а затем показать, что корень из скалярного произведения задает метрику. Тогда эта метрика будет индуцировать топологию открытыми шарами, а значит, можно будет воспользоваться аналогом теоремы Жордана.
 
Эта история о том, что даже когда мы притворяемся, что у нас нет метрики, мы неявно испоользуем топологию, индуцированную этой метрикой. Но, метрика, не единственна, и топология не единственна. Иногда нам достаточно топологии, которая даже может быть не индуцирована метрикой, или которая вообще не метризуема, но эта топология будет давать свойство непрерывности. Но тогда для нашей топогогии нужно будет доеказывать вышеупомянутый факт(про непрерывность кривой).
 
Итак, поворот классифицирует точки не лежащие на плоскости и разбивает их на два выпуклых множества
==ОБЪЕМ==
264
правки

Навигация