Изменения

Перейти к: навигация, поиск

Объём

2 байта добавлено, 16:01, 9 декабря 2016
м
Вычисление поворота
Плоскость <tex>g</tex> определяется замыканием набора <tex>a_1, a_2, \dots, a_d</tex> ЛНЗ точек, значит, если <tex>p</tex> принадлежит множеству, то <tex>p</tex> является линейной комбинацией этих точек. В этом случае мы с помощью преобразований можем получить нулевую стррочку в матрице <tex>A</tex>, значит, ее определитель будет ноль.
}}
Разобъем все точки пространства(кроме тех, что лежат на плоскости) на два множества в зависимости от того, какой знак для них будет иметь детерминант <tex>A</tex>. Покажем, что наша классификация осмысленна.
{{Лемма
|id= pConvex
В афинном пространстве можно вполне естественно ввести евклидовскую метрику: ввести скалярное произведение, а затем показать, что корень из скалярного произведения задает метрику. Тогда эта метрика будет индуцировать топологию открытыми шарами, а значит, можно будет воспользоваться аналогом теоремы Жордана.
Эта история о том, что даже когда мы притворяемся, что у нас нет метрики, мы неявно испоользуем топологию, индуцированную этой метрикой. Но, метрика, не единственна, и топология не единственна. Иногда нам достаточно топологии, которая даже может быть не индуцирована метрикой, или которая вообще не метризуема, но эта топология будет давать свойство непрерывности. Но тогда для нашей топогогии нужно будет доеказывать вышеупомянутый факт(про непрерывность кривой).
Итак, поворот классифицирует точки не лежащие на плоскости и разбивает их на два выпуклых множества
==Объем==
113
правок

Навигация