Изменения

Перейти к: навигация, поиск

Группы графов

26 байт добавлено, 22:25, 10 декабря 2016
м
Нет описания правки
'''Автоморфизмом''' (англ. ''Automorphism'') графа <tex>G</tex> называется изоморфизм графа <tex>G</tex> на себя
}}
 
 
Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть [[:группа#Группа_подстановок|подстановка]] множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, подстановка <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм;
{{Определение
|definition=
Каждый автоморфизм <tex>\alpha</tex> графа <tex>G</tex> есть подстановка множества вершин <tex>V</tex>, сохраняющая смежность. Конечно, [[:группа#Группа_подстановок|подстановка]] <tex>\alpha</tex> переводит любую вершину графа в вершину той же степени. Очевидно, что последовательное выполнение двух автоморфизмов есть также автоморфизм; поэтому автоморфизмы Автоморфизмы графа <tex> G </tex> образуют [[:группа#Группа_подстановок|группу подстановок]] <tex> \Gamma (G) </tex>, действующую на множестве вершин <tex>V(G)</tex>. Эту [[:группа|группу ]] называют '''группой''' или иногда '''вершинной группой графа''' <tex>G</tex> (англ. ''point-group'').
}}
[[Файл:fordm.png|right]]
Для иллюстрации различия групп <tex>\Gamma</tex> и <tex>\Gamma_1</tex> рассмотрим граф <tex>K_4 - хx</tex>, показанный на рисунке; его вершины помечены <tex>v_1 , v_2, v_3, v_4 </tex> а ребра <tex>x_1, x_2, x_3, x_4, x_5 </tex>. Вершинная группа <tex>\Gamma (K_4 - x) </tex> состоит из четырех подстановок
<tex>(v_1)(v_2)(v_3)(v_4); (v_1)(v_3)(v_2v_4); (v_2)(v_4)(v_1v_3); (v_1v_3)(v_2v_4).</tex>
<tex>(x_1)(x_2)(x_3)(x_4)(x_5); (x_1x_4)(x_2x_3)(x_5); (x_1x_2)(x_3x_4)(x_5); (x_1x_3)(x_2x_4)(x_5).</tex>
Понятно, что реберная и вершинная группы графа <tex>K_4 - х</tex> изоморфны. Но они, конечно, не могут быть идентичными, так как степень группы <tex>\Gamma_1 (K_4 - x) </tex> равна <tex>5</tex>, а степень группы <tex>\Gamma (K_4 - x) </tex> равна <tex>4</tex>.
{{Теорема
36
правок

Навигация