1632
правки
Изменения
м
Сетью называется взвешенный ориентированный граф '''Сеть''' (англ. ''flow network'') <tex>G=(V,E)</tex> представляет собой [[Основные определения теории графов#oriented_grath|ориентированный граф]],в котором каждое [[Основные определения теории графов#def_graph_edge_1|ребро]] <tex>(u,v)\in E</tex> имеет положительную '''пропускную способность''' (англ. ''capacity'') <tex>c(u,v)>0</tex>. Если <tex>(u, где v)\notin E</tex>, предполагается что <tex>c\colon E\to R(u,v)=0</tex> - весовая функция.
<b>'''Потоком</b> ''' <tex>f</tex> в сети <tex>G=(V,E,c)</tex> называется функция <tex>f\colon E\to R</tex>, удоволетворяющая условиям:1) <tex>0\le leqslant f(e)\le leqslant c(e)</tex> для всех <tex>e\in E</tex>;
rollbackEdits.php mass rollback
{{Определение
|id=flow_network
|definition=
}}
В транспортной сети выделяются две вершины: '''исток''' <tex>s</tex> и '''сток''' <tex>t</tex>.
== Определение потока ==
{{Определение
|id=flow
|definition=
'''Потоком''' (англ. ''flow'') <tex>f</tex> в <tex>G</tex> является действительная функция <tex>f\colon V\times V\to R</tex>, удоволетворяющая условиям:
1) <tex>f(u,v)=-f(v,u)</tex> (антисимметричность);
2) <tex>f(u,v) \leqslant c(u,v)</tex> (ограничение пропускной способности), если ребра нет, то <tex>f(u,v)=0</tex>;
3) <tex>\sum\limits_v f(u,v)=0</tex> для всех вершин <tex>u</tex>, кроме <tex>s</tex> и <tex>t</tex> (закон сохранения потока).
'''Величина''' потока <tex>f</tex> определяется как <tex>|f|=\sum\limits_{v\in V} f(s,v)</tex>.
}}
Также существует альтернативное определение (по Асанову), не вводящее антисимметричность (зачастую, из-за этого с ним труднее работать):
{{Определение
|definition=
2) <tex>f(v-) = f(v+)</tex> для всех <tex>v\in V, v\ne s, v\ne t</tex>, где <tex>f(v-)=\sum\limits_{w\in v-} f(w,v), f(v+)=\sum\limits_{w\in v+} f(v,uw)</tex>.Здесь <tex>s</tex> {{ - <b>-- }} '''источник</b>''', а <tex>t</tex> {{ - <b>-- }} '''сток</b> ''' сети <tex>G</tex> (<tex>s</tex> имеет нулевую степень захода, а <tex>t</tex> имеет нулевую степень исхода); через <tex>v+</tex> обозначено множество вершин, к которым идут [[Основные определения теории графов#def_graph_edge_1|дуги ]] из вершины <tex>v</tex>; через <tex>v-</tex> обозначено множество вершин, из которых идут дуги в вершину <tex>v</tex>; <tex>c(e)</tex> называется <b>'''пропускной способностью</b> ''' дуги <tex>e</tex> и неотрицательно.
}}
Число <tex>f(v,w)</tex> можно интерпретировать, например, как количество жидкости, поступающей из <tex>v</tex> в <tex>w</tex> по дуге <tex>(v,w)</tex>. С этой точки зрения значение <tex>f(v-)</tex> может быть интерпретировано как поток, втекающий в вершину <tex>v</tex>, а <tex>f(v+)</tex> {{- --}} вытекающий из <tex>v</tex>.Условие 1) называется условием ограничения по пропускной способности, а условие 2) {{-- -}} условием сохранения потока в вершинах; иными словами, поток, втекающий в вершину <tex>v</tex>, отличную от <tex>s</tex> или <tex>t</tex>, равен вытекающему из неё потоку. == Пример ==Пример сети с источником <tex>s</tex> и стоком <tex>t</tex>. [[Файл:Flow-network.png|340px|center]] Первое число означает величину потока, второе {{---}} пропускную способность ребра. Отрицательные величины потока не указаны (так как они мгновенно получаются из антисимметричности: <tex>f(u,v)=-f(v,u)</tex>). Сумма входящих рёбер везде (кроме источника и стока) равна сумме исходящих и на то, что в общем <tex>c(u,v) \neq c(v, u)</tex>. Кроме того, величина потока на ребре никогда не превышает пропускную способность этого ребра. Величина потока в этом примере равна <tex> 3 + 2 = 5 </tex> (считаем от вершины <tex>s</tex>). == Источники информации ==* ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)* ''Асанов М. О., Баранский В. А., Расин В. В.'' — '''Дискретная математика: Графы, матроиды, алгоритмы: Учебное пособие.''' 2-е изд., испр. и доп. — СПб.: Издательство "Лань", 2010. — 368 с.: ил. — (Учебники для вузов. Специальная литература). ISBN 978-5-8114-1068-2* [http://ru.wikipedia.org/wiki/Транспортная_сеть Википедия <tex>-</tex> Транспортная сеть]* [http://en.wikipedia.org/wiki/Flow_network Wikipedia <tex>-</tex> Flow network] [[Категория:Алгоритмы и структуры данных]][[Категория:Задача о максимальном потоке]]