Изменения

Перейти к: навигация, поиск

Изоморфизмы упорядоченных множеств

76 байт добавлено, 23:09, 1 января 2017
Нет описания правки
|id=th1
|about=1
|statement=Конечные [[Отношение порядка|линейно упорядоченные ]] множества из одинакового числа элементов изоморфны.
|proof=Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент <tex>x_1</tex>. Если он не наименьший, возьмём любой меньший него <tex>x_2</tex>. Если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность <tex> x_1 > x_2 > \dots </tex> , которая рано или поздно должна оборваться, так как множество конечное. Присвоим наименьшему элементу номер <tex> 1 </tex>. Из оставшихся снова выберем наименьший элемент и присвоим ему номер <tex>2</tex>. Будем повторять эту операцию, пока в множестве не останется непомеченных элементов. Таким образом, мы доказали, что любое такое множество из <tex> n </tex> элементов изоморфно множеству <tex> \{ 1,2,\dots,n \} </tex>. Значит, между двумя конечными линейно упорядоченными множествами из одинакового числа элементов можно построить биекцию.
}}
|about=2
|statement=Любые два счётных плотных<ref> Линейно упорядоченное множество называют
плотным, если в нём нет соседних элементов (то есть между любыми двумя есть третий). </ref> [[Отношение порядка|линейно упорядоченных ]] множества без наибольшего и наименьшего элементов изоморфны.
|proof=Пусть <tex> A </tex> и <tex> B </tex> — данные множества. Будем строить соответствие пошагово. Пусть мы сделали некоторое соответствие для подмножеств <tex> A_n \subset A </tex> и <tex> B_n \subset B </tex> из <tex> n </tex> элементов. Возьмем любой элемент одного из множеств (для определенности <tex> A </tex>), который не вошел в <tex> A_n </tex>. Посмотрим, в каком отношении он находится со всеми элементами из <tex> A_n </tex>. Он оказался либо наибольшим элементом, либо наименьшим элементом, либо стоящим между некоторыми элементами <tex> a_i </tex> и <tex> a_{i+1} </tex>. Найдем элемент в <tex> B </tex>, находящийся в таком же отношении со всеми элементами <tex> B_n </tex>. Мы можем это сделать, так как <tex> B </tex> — плотное множество без наибольшего и наименьшего элементов. Будем считать эти два элемента эквивалентными. Тогда, мы научились получать из соответствия для <tex> n </tex> элементов соответствие для <tex> n+1 </tex> элемента. Чтобы в пределе получить соответствие для всех элементов, воспользуемся счетностью множеств. Пронумеруем все элементы и на каждом четном шаге будем выбирать еще не взятый элемент из множества <tex> A </tex> с наименьшим номером, а на нечетном — из <tex> B </tex>.
}}
37
правок

Навигация