Изменения

Перейти к: навигация, поиск

Блокирующий поток

437 байт добавлено, 16:36, 7 января 2017
Нет описания правки
<b>Блокирующий поток</b> (англ. ''blocking flow'') {{---}} такой поток <tex>f</tex> в данной сети <tex>G</tex>, что любой <tex>s \leadsto t</tex> путь содержит насыщенное этим потоком ребро. Иными словами, в данной сети не найдётся такого пути из истока в сток, вдоль которого можно беспрепятственно увеличить поток.
}}
[[Файл:Блокпоток.png|240px|thumb|right|Рис. 1. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]][[Файл:Блокирующийпоток.png|240px|thumb|right|Рис. 2. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]]
Блокирующий поток не обязательно максимален (пример: см. рис. 1). [[Теорема Форда-Фалкерсона]] говорит о том, что поток будет максимальным тогда и только тогда, когда в остаточной сети не найдётся <tex>s \leadsto t</tex> пути; в блокирующем же потоке ничего не утверждается о существовании пути по рёбрам, появляющимся в остаточной сети.
Более того, величина блокирующего потока может быть сколь угодно мала по сравнению с величиной максимального потока в сети (пример: см. рис. 2). В примере поток является блокирующим и имеет величину 1, в то время как максимальный можно делать сколь угодно большим, увеличивая количество вершин по той же схеме.
 
 
Блокирующий поток используется в алгоритме Диница. Его поиск с помощью удаляющего обхода занимает <tex>O(VE)</tex> времени.
{|align="center"
|-valign="top"
|[[Файл:Блокпоток.png|240px|thumb|right|Рис. 1. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]]
|[[Файл:Блокирующийпоток.png|240px|thumb|right|Рис. 2. Пропускные способности всех рёбер равны единице, по красным рёбрам течёт единичный поток.]]
|}
== См. также ==
== Источники ==
* [http://www.e-maxx.ru/algo/dinic Алгоритм Диница. Необходимые определения.]
* [[wikipedia:Dinic's_algorithm | Wikipedia {{---}} Dinic's algorithm]]
* [[wikipedia:Алгоритм_Диница | Википедия {{---}} алгоритм Диница ]]
[[Категория: Алгоритмы и структуры данных]]
[[Категория: Задача о максимальном потоке ]]
Анонимный участник

Навигация