186
правок
Изменения
Нет описания правки
Convex hull trick “{{---}} один из методов оптимизации динамического программирования [[http://neerc.ifmo.ru/wiki/index.php?title=Динамическое_программирование]], использующий идею выпуклой оболочки. Позволяет улучшить ассимптотику решения некоторых задачь, решемых методом динамического программирования с <math>O(n^2)</math> до <tex>O(n\cdot\log(n))</tex>. Техника впервые появилась в 1995 году (задачу на нее предложили в USACO “{{---}} национальной олимпиаде США по программированию). Массовую известность получила после IOI (международной олимпиады по программированию для школьников) 2002.
==Пример задачи, решаемой методом convex hull trick==
==Наивное решение==
Сначала заметим важный факт : т.к. <tex>c[i]</tex> убывают (нестрого) и <tex>c[n] = 0</tex>, то все <tex>c[i]</tex> неотрицательны.
Понятно, что нужно затратив минимальную стоимость срубить последнее (<tex>n</tex>-е) дерево, т.к. после него все деревья можно будет рубить бесплатно (т.к. <tex>c[n] = 0</tex>). Посчитаем следующую динамику : <tex>dp[i]</tex> “{{---}} минимальная стоимость, заплатив которую можно добиться того, что дерево номер <tex>i.</tex> будет срублено.
База динамики : <tex>dp[1] = 0</tex>, т.к. изначально пила заправлена и высота первого дерева равна 1, по условию задачи.
Переход динамики : понятно, что выгодно рубить сначала более дорогие и низкие деревья, а потом более высокие и дешевые (док-во этого факта оставляется читателям как несложное упражнение, т.к. эта идея относится скорее к теме жадных алгоритмнов, чем к теме данной статьи). Поэтому перед <tex>i</tex>-м деревом мы обязательно срубили какое-то <tex>j</tex>-е, причем <tex>j \leqslant i - 1</tex>. Поэтому чтобы найти <tex>dp[i]</tex> нужно перебрать все <tex>1 \leqslant j \leqslant i - 1</tex> и попытаться использовать ответ для дерева намер <tex>j</tex>. Итак, пусть перед <tex>i</tex>-м деревом мы полностью срубили <tex>j</tex>-е, причем высота <tex>i</tex>-го дерева составляет <tex>a[i]</tex>, а т.к. последнее дерево, которое мы срубили имеет индекс <tex>j</tex>, то стоимость каждого метра <tex>i</tex>-го дерева составит <tex>c[j]</tex>. Поэтому на сруб <tex>i</tex>-го дерева мы потратим <tex>a[i] \cdot c[j]</tex> монет. Также не стоит забывать, ситуацию, когда <tex>j</tex>-е дерево полностью срублено, мы получили не бесплатно, а за <tex>dp[j]</tex> монет.
==Детали реализации:==
Будем хранить 2 массива : <tex>front[]</tex> “{{---}} <tex>x</tex>-координаты, начиная с которых прямые совпадают с выпуклой оболочкой (т.е. i-я прямая совпадает с выпуклой оболочкой текущего множества прямых при <tex>x</tex> <tex>\in</tex> <tex>[front[i]; front[i + 1])</tex> ) и <tex>st[]</tex> “{{---}} номера деревьев, соответствующих прямым (т.е. <tex>i</tex>-я прямая множества, где <tex>i</tex> <tex>\in</tex> <tex>[1; sz]</tex> соответствует дереву номер <tex>sz[i]</tex>). Также воспользуемся тем, что <tex>x[i] = a[i]</tex> возрастают (по условию задачи), а значит мы можем искать первое такое <tex>j</tex>, что <tex>x[i] \geqslant front[j]</tex> не бинарным поиском, а методом двух указателей за <tex>O(n)</tex> операций суммарно. Также массив front[] можно хранить в целых числах, округляя х-координаты в сторону лежащих правее по оси x до ближайшего целого (*), т.к. на самом деле мы, считая динамику, подставляем в уравнения прямых только целые <tex>x[i]</tex>, а значит если <tex>k</tex>-я прямая пересекается с <tex>k+1</tex>-й в точке <tex>z +</tex> <tex>\alpha</tex> (<math>z</math>-целое, <tex>\alpha</tex> <tex>\in</tex> <tex>[0;1)</tex>), то мы будем подставлять в их уравнения <tex>z</tex> или <tex>z + 1</tex>. Поэтому можно считать, что новая прямая начинает совпадать с выпуклой оболочкой, начиная с <tex>x = z+1</tex>
==Реализация==