Изменения

Перейти к: навигация, поиск

Список заданий по ДМ 2017 весна

Нет изменений в размере, 13:42, 8 марта 2017
Нет описания правки
# Докажите, что корреляция случайных величин равна 1 тогда и только тогда, когда они линейно зависимы $(f = cg)$ и $c > 0$ (если $c < 0$, то корелляция равна -1)
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух бросков равны 11. Вася выигрывает, когда результаты последних двух бросков равны 00. С какой вероятностью Петя выиграет?
# Петя и Вася играют в игру. Они бросают честную монету, и выписывают результаты бросков. У каждого из игроков есть критерий победы, выигрывает тот, чей критерий наступит раньше. Петя выигрывает в тот момент, когда результаты последних двух трех бросков равны 001. Вася выигрывает, когда результаты последних двух трех бросков равны 010. С какой вероятностью Петя выиграет?
# Можно ли сделать игру в предыдущем задании честной (чтобы вероятности выигрышей оказались равны $1/2$), используя нечестную монету?
# По аналогии с доказательством на лекции, докажите оценку на отклонение суммы $n$ честных монет от $n/2$ вниз: $P(\xi \le (1-\delta)n/2) \le \exp(-\delta^2/(4n))$.
Анонимный участник

Навигация