276
правок
Изменения
→Примеры
#<tex>A(s) = 1 + s</tex>
#:<tex>b_0 = \dfrac{1}{a_0} = \dfrac{1}{1} = 1</tex>
#:<tex>a_0 b_1 + a_1 b_0 = 0 \Rightarrow b_1 = - \dfrac{a_1b_0}{a_0^2} = - \dfrac{1 \cdot 1}{1^2} = -1</tex>#:<tex>a_0 b_2 + a_1 b_1 + a_2 b_0 = 0 \Rightarrow b_2 = - \dfrac{a_1 b_1+ a_2 b_0}{a_0} = - \dfrac{1 \cdot (-1)+ 0}{1} = 1</tex>
#:<tex>\dots</tex>
#:<tex>b_n = - \dfrac{a_1 b_{n - 1}}{a_0} = -b_{n - 1}</tex>
#:<tex>B(s) = 1 - s + s^2 - s^3 + \dots</tex>
#<tex>A(s) = 1 - s - s^2</tex>
#:<tex>b_0 = \dfrac{1}{a_0} = \dfrac{1}{1} = 1</tex>
#:<tex>b_1 = - \dfrac{a_1b_0}{a_0^2} = - \dfrac{(-1) \cdot 1}{1^2} = 1</tex>
#:<tex>b_2 = - \dfrac{a_1 b_1 + a_2 b_0}{a_0} = - \dfrac{(-1) \cdot 1 + (-1) \cdot 1}{1} = 2</tex>
#:<tex>b_3 = - \dfrac{a_1 b_2 + a_2 b_1}{a_0} = - \dfrac{(-1) \cdot 2 + (-1) \cdot 1}{1} = 3</tex>